Order of convergence of the finite element method for the p(x)-Laplacian

In this work, we study the rate of convergence of the nite element method for the p(x) Laplacian (1 > 1 and PM is a function that satises PM (0) = 2 and PM (x) = 1 for alljxj > M.

[1]  S. Samko Denseness of C 0 ∞(R N ) in the Generalized Sobolev Spaces , 2000 .

[2]  John W. Barrett,et al.  Higher-order regularity for the solutions of some degenerate quasilinear elliptic equations in the plane , 1993 .

[3]  Erik M. Bollt,et al.  Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion , 2009, Adv. Comput. Math..

[4]  D. Breit,et al.  Finite element approximation of the $p(\cdot)$-Laplacian , 2013, 1311.5121.

[5]  Christian Kreuzer,et al.  Optimality of an adaptive finite element method for the p-Laplacian equation , 2012 .

[6]  Sharp constants for some inequalities connected to the p-Laplace operator , 2005 .

[7]  W. B. Liu,et al.  Quasi-Norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems , 2005, Numerische Mathematik.

[8]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[9]  H2 regularity for the p(x)-Laplacian in two-dimensional convex domains , 2011, 1107.3136.

[10]  Andreas Prohl,et al.  Convergence Analysis for Incompressible Generalized Newtonian Fluid Flows with Nonstandard Anisotropic Growth Conditions , 2010, SIAM J. Numer. Anal..

[11]  Ariel L. Lombardi,et al.  Interior Penalty Discontinuous Galerkin FEM for the p(x)-Laplacian , 2010, SIAM J. Numer. Anal..

[12]  John W. Barrett,et al.  A further remark on the regularity of the solutions of the p -Laplacian and its applications to their finite element approximations , 1993 .

[13]  M. Ruzicka,et al.  Electrorheological Fluids : Modeling and Mathematical Theory (Mathematical Analysis in Fluid and Gas Dynamics) , 2000 .

[14]  John W. Barrett,et al.  Finite element approximation of the p-Laplacian , 1993 .

[15]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[16]  Jiří Rákosník,et al.  On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .

[17]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[18]  L. Diening Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$ , 2004 .

[19]  A. Prohl CONVERGENCE OF AN IMPLICIT FINITE ELEMENT DISCRETIZATION FOR A CLASS OF PARABOLIC EQUATIONS WITH NONSTANDARD ANISOTROPIC GROWTH CONDITIONS , 2008 .

[20]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .