Absence of a Metallicity Effect for Ultra-short-period Planets

Ultra-short-period (USP) planets are a newly recognized class of planets with periods shorter than one day and radii smaller than about 2 R⊕. It has been proposed that USP planets are the solid cores of hot Jupiters that have lost their gaseous envelopes due to photo-evaporation or Roche lobe overflow. We test this hypothesis by asking whether USP planets are associated with metal-rich stars, as has long been observed for hot Jupiters. We find the metallicity distributions of USP-planet and hot-Jupiter hosts to be significantly different (p = 3 × 10−4) based on Keck spectroscopy of Kepler stars. Evidently, the sample of USP planets is not dominated by the evaporated cores of hot Jupiters. The metallicity distribution of stars with USP planets is indistinguishable from that of stars with short-period planets with sizes between 2 and 4 R⊕. Thus, it remains possible that the USP planets are the solid cores of formerly gaseous planets that are smaller than Neptune.

[1]  P. Cargile,et al.  The California-Kepler Survey. I. High-resolution Spectroscopy of 1305 Stars Hosting Kepler Transiting Planets , 2017, 1703.10400.

[2]  Howard Isaacson,et al.  The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets , 2017, 1703.10375.

[3]  P. Cargile,et al.  The California-Kepler Survey. II. Precise Physical Properties of 2025 Kepler Planets and Their Host Stars , 2017, 1703.10402.

[4]  E. Chiang,et al.  Magnetospheric Truncation, Tidal Inspiral, and the Creation of Short-period and Ultra-short-period Planets , 2017, 1702.08461.

[5]  B. Jackson,et al.  A New Model of Roche Lobe Overflow for Short-period Gaseous Planets and Binary Stars , 2016, 1612.04332.

[6]  D. Latham,et al.  The Metallicity Distribution and Hot Jupiter Rate of the Kepler Field: Hectochelle High-resolution Spectroscopy for 776 Kepler Target Stars , 2016, 1612.01616.

[7]  S. Ginzburg,et al.  Hot-Jupiter core mass from Roche lobe overflow , 2016, 1611.09373.

[8]  Phillip J. MacQueen,et al.  ULTRA-SHORT-PERIOD PLANETS IN K2 WITH COMPANIONS: A DOUBLE TRANSITING SYSTEM FOR EPIC 220674823 , 2016, The Astronomical Journal.

[9]  J. Steffen,et al.  A Population of planetary systems characterized by short-period, Earth-sized planets , 2016, Proceedings of the National Academy of Sciences.

[10]  E. Lopez Born dry in the photoevaporation desert: Kepler's ultra-short-period planets formed water-poor , 2016, 1610.01170.

[11]  D. Apai,et al.  A SUPER-SOLAR METALLICITY FOR STARS WITH HOT ROCKY EXOPLANETS , 2016, 1609.05898.

[12]  Christoph Baranec,et al.  TWO SMALL PLANETS TRANSITING HD 3167 , 2016, 1607.05248.

[13]  Chelsea X. Huang,et al.  Dependence of Small Planet Frequency on Stellar Metallicity Hidden by Their Prevalence , 2016, 1605.04310.

[14]  M. R. Haas,et al.  FALSE POSITIVE PROBABILITIES FOR ALL KEPLER OBJECTS OF INTEREST: 1284 NEWLY VALIDATED PLANETS AND 428 LIKELY FALSE POSITIVES , 2016, 1605.02825.

[15]  Khadeejah A. Zamudio,et al.  DETECTION OF POTENTIAL TRANSIT SIGNALS IN 17 QUARTERS OF KEPLER DATA: RESULTS OF THE FINAL KEPLER MISSION TRANSITING PLANET SEARCH (DR25) , 2016, 1604.06140.

[16]  R. Gilliland,et al.  Hot super-Earths stripped by their host stars , 2016, Nature Communications.

[17]  M. Endl,et al.  ULTRA-SHORT-PERIOD PLANETS IN K2 SUPERPIG RESULTS FOR CAMPAIGNS 0–5 , 2016, 1603.06488.

[18]  T. Guillot,et al.  SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period , 2015, 1511.00643.

[19]  F. Adams,et al.  WASP-47: A HOT JUPITER SYSTEM WITH TWO ADDITIONAL PLANETS DISCOVERED BY K2 , 2015, 1508.02411.

[20]  L. Buchhave,et al.  THE METALLICITIES OF STARS WITH AND WITHOUT TRANSITING PLANETS , 2015, 1507.03557.

[21]  A. Burrows,et al.  EVOLUTIONARY MODELS OF SUPER-EARTHS AND MINI-NEPTUNES INCORPORATING COOLING AND MASS LOSS , 2015, 1505.02784.

[22]  K. Schlaufman A CONTINUUM OF PLANET FORMATION BETWEEN 1 AND 4 EARTH RADII , 2015, 1501.05953.

[23]  G. Marcy,et al.  DETECTION OF STARS WITHIN ∼0.8 in OF Kepler OBJECTS OF INTEREST , 2014, 1412.5259.

[24]  J. Steffen,et al.  FROM HOT JUPITERS TO SUPER-EARTHS VIA ROCHE LOBE OVERFLOW , 2014, 1408.3635.

[25]  C. Terquem On the formation of the Kepler-10 planetary system , 2014, 1407.7682.

[26]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[27]  P. McCullough,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[28]  L. Buchhave,et al.  Three regimes of extrasolar planet radius inferred from host star metallicities , 2014, Nature.

[29]  Michael C. Kotson,et al.  A STUDY OF THE SHORTEST-PERIOD PLANETS FOUND WITH KEPLER , 2014, 1403.2379.

[30]  G. Marcy,et al.  THE MASS–RADIUS RELATION FOR 65 EXOPLANETS SMALLER THAN 4 EARTH RADII , 2013, 1312.0936.

[31]  Zheng Zheng,et al.  ON THE METALLICITIES OF KEPLER STARS , 2013, 1311.1203.

[32]  D. Fischer,et al.  REVEALING A UNIVERSAL PLANET–METALLICITY CORRELATION FOR PLANETS OF DIFFERENT SIZES AROUND SOLAR-TYPE STARS , 2013, 1310.7830.

[33]  E. Adams,et al.  A SURVEY FOR VERY SHORT-PERIOD PLANETS IN THE KEPLER DATA , 2013, 1308.1379.

[34]  L. Rogers,et al.  THE ROCHE LIMIT FOR CLOSE-ORBITING PLANETS: MINIMUM DENSITY, COMPOSITION CONSTRAINTS, AND APPLICATION TO THE 4.2 hr PLANET KOI 1843.03 , 2013, 1307.4080.

[35]  Michael C. Kotson,et al.  TRANSITS AND OCCULTATIONS OF AN EARTH-SIZED PLANET IN AN 8.5 hr ORBIT , 2013, 1305.4180.

[36]  E. Gaidos,et al.  TESTING THE METAL OF LATE-TYPE KEPLER PLANET HOSTS WITH IRON-CLAD METHODS , 2013, 1304.7269.

[37]  G. Laughlin,et al.  The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths , 2012, 1211.1673.

[38]  V. Adibekyan,et al.  Exploring the α-enhancement of metal-poor planet-hosting stars. The Kepler and HARPS samples , 2012, 1209.6272.

[39]  J. B. Laird,et al.  An abundance of small exoplanets around stars with a wide range of metallicities , 2012, Nature.

[40]  Instituto de Astrof'isica de Canarias,et al.  Spectroscopic stellar parameters for 582 FGK stars in the HARPS volume-limited sample. Revising the metallicity-planet correlation , 2011, 1108.5279.

[41]  G. Laughlin,et al.  KEPLER EXOPLANET CANDIDATE HOST STARS ARE PREFERENTIALLY METAL RICH , 2011, 1106.6043.

[42]  D. Queloz,et al.  Detection of a transit of the super-Earth 55 Cancri e with warm Spitzer , 2011, 1105.0415.

[43]  Jaymie M. Matthews,et al.  A SUPER-EARTH TRANSITING A NAKED-EYE STAR , 2011, 1104.5230.

[44]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[45]  S. Ida,et al.  A POPULATION OF VERY HOT SUPER-EARTHS IN MULTIPLE-PLANET SYSTEMS SHOULD BE UNCOVERED BY KEPLER , 2010, 1010.3705.

[46]  Daniel C. Fabrycky,et al.  RADIAL VELOCITY PLANETS DE-ALIASED: A NEW, SHORT PERIOD FOR SUPER-EARTH 55 Cnc e , 2010, 1005.4050.

[47]  et al,et al.  The CoRoT space mission : early results Special feature Transiting exoplanets from the CoRoT space mission VIII . CoRoT-7 b : the first super-Earth with measured radius , 2009 .

[48]  Norman Murray,et al.  ATMOSPHERIC ESCAPE FROM HOT JUPITERS , 2008, 0811.0006.

[49]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[50]  R. Schiavon,et al.  A library of high resolution synthetic stellar spectra from 300 nm to 1.8 μm with solar and α-enhanced composition , 2005, astro-ph/0505511.

[51]  J. Valenti,et al.  The Planet-Metallicity Correlation , 2005 .

[52]  Shigeru Ida,et al.  Toward a Deterministic Model of Planetary Formation. II. The Formation and Retention of Gas Giant Planets around Stars with a Range of Metallicities , 2004, astro-ph/0408019.

[53]  Spain.,et al.  Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation , 2003, astro-ph/0311541.

[54]  G. González The stellar metallicity—giant planet connection , 1997 .

[55]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.