Fractal geometry applications in description and analysis of patch patterns and patch dynamics

Abstract Fractal geometry applications have recently been paid great attention in ecology. In this paper, I summarize the state of the art and introduce several updated developments in analysis and description of patch patterns and patch dynamics by means of Mandelbrot’s fractal analysis, with an emphasis on my current research results and a personal view. These topics include geometric fractals, statistical fractals, information fractals, the fluctuation-tolerant fractals of dynamic patch size and shape, patch hierarchical scaling, fractal spatial patterns, multiple scale sampling and data analysis, fractal fragmentation of the landscape habitat into patches, fractal correlation in patchy systems, fractal cluster dynamics of vegetation systems, fractal mechanisms and ecological consequences, the spatio-temporal integrated approach and so on. The ecological significance of fractals in patch pattern and patch dynamics is discussed. A case study on fractal analysis of patch dynamics of southern Texas savanna landscape is given. Several limitations of fractal analysis in ecological applications are also addressed.

[1]  Tang,et al.  Self-Organized Criticality: An Explanation of 1/f Noise , 2011 .

[2]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[3]  Luciano Pietronero,et al.  FRACTALS IN PHYSICS , 1990 .

[4]  D. Ruelle Chaotic evolution and strange attractors , 1989 .

[5]  Bruce T. Milne,et al.  Spatial Aggregation and Neutral Models in Fractal Landscapes , 1992, The American Naturalist.

[6]  P. A. Burrough,et al.  Multiscale sources of spatial variation in soil. II. A non‐Brownian fractal model and its application in soil survey , 1983 .

[7]  Bai-lian Li,et al.  Statistical properties of ecological and geologic fractals , 1996 .

[8]  P. Bak,et al.  Self-organized criticality , 1991 .

[9]  Donald L. Turcotte,et al.  Fractals and fragmentation , 1986 .

[10]  Bai-Lian Li,et al.  Stability analysis of a nonhomogeneous Markovian landscape model , 1995 .

[11]  Resolution-limited measure and dimension , 1992 .

[12]  R. O'Neill,et al.  Landscape patterns in a disturbed environment , 1987 .

[13]  R. Wen,et al.  Uncertainty in fractal dimension estimated from power spectra and variograms , 1997 .

[14]  S. Kauffman,et al.  Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. , 1991, Journal of theoretical biology.

[15]  Richard F. Voss,et al.  Fractals in nature: from characterization to simulation , 1988 .

[16]  D. Sornette,et al.  Convergent Multiplicative Processes Repelled from Zero: Power Laws and Truncated Power Laws , 1996, cond-mat/9609074.

[17]  Qiuming Cheng,et al.  Multifractal modeling and spatial statistics , 1996 .

[18]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[19]  Fractal Time-Series and Fractional Brownian Motion , 1991 .

[20]  H M Hastings,et al.  Time scales, persistence and patchiness. , 1982, Bio Systems.

[21]  D. Mason,et al.  Description and Analysis of Spatial Patterns , 1993 .

[22]  C. Loehle,et al.  Landscape habitat diversity: a multiscale information theory approach , 1994 .

[23]  Per Bak,et al.  How Nature Works: The Science of Self‐Organized Criticality , 1997 .

[24]  D. C. Sherrington,et al.  Spontaneous formation of space-time structures and criticality , 1991 .

[25]  P. A. Burrough,et al.  Multiscale sources of spatial variation in soil. I: The application of fractal concepts to nested levels of soil variation , 1983 .

[26]  Bai-lian Li,et al.  Wavelet Analysis of Coherent Structures at the Atmosphere-Forest Interface. , 1993 .

[27]  G. Berntson,et al.  Root Systems and Fractals: How Reliable are Calculations of Fractal Dimensions? , 1994 .

[28]  H. Kesten Random difference equations and Renewal theory for products of random matrices , 1973 .

[29]  P. White,et al.  The Ecology of Natural Disturbance and Patch Dynamics , 1986 .

[30]  T. Vicsek Fractal Growth Phenomena , 1989 .

[31]  R. Paine,et al.  Disturbance, patch formation, and community structure. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Naeem Jan,et al.  Forest fires as critical phenomena , 1984 .

[33]  Qiuming Cheng,et al.  The perimeter-area fractal model and its application to geology , 1995 .

[34]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[35]  Orly Shenker,et al.  Fractal geometry is not the geometry of nature , 1994 .

[36]  John W. Crawford,et al.  The fractal structure of soil aggregates: its measurement and interpretation , 1991 .

[37]  J. Lawton,et al.  Fractal geometry of ecological habitats , 1991 .

[38]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[39]  Serge Frontier,et al.  Applications of Fractal Theory to Ecology , 1987 .

[40]  Thomas M. Over,et al.  A space‐time theory of mesoscale rainfall using random cascades , 1996 .

[41]  Donald A. Dawson,et al.  Estimation of dimension for spatially distributed data and related limit theorems , 1989 .

[42]  Bruce J. West,et al.  FRACTAL PHYSIOLOGY AND CHAOS IN MEDICINE , 1990 .

[43]  Misako Takayasu,et al.  STABLE INFINITE VARIANCE FLUCTUATIONS IN RANDOMLY AMPLIFIED LANGEVIN SYSTEMS , 1997 .

[44]  J. Walker,et al.  Simulation of two-dimensional point patterns: Application of a lattice framework approach , 1987 .

[45]  D. E. Grady,et al.  Fragmentation of the universe , 1983 .

[46]  I. Rodríguez‐Iturbe,et al.  Self-organized fractal river networks. , 1993, Physical review letters.

[47]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[48]  P. J. Clark,et al.  Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations , 1954 .

[49]  D. Sornette Multiplicative processes and power laws , 1997, cond-mat/9708231.

[50]  David G. Green,et al.  Fractals in ecology: methods and interpretation , 1984 .

[51]  D. Montgomery,et al.  Channel Initiation and the Problem of Landscape Scale , 1992, Science.

[52]  S. Solomon,et al.  Wavelet analysis of multiscale permeabilities in the subsurface (Paper 95GL03552) 3123 , 1995 .

[53]  F. Bartoli,et al.  Structure and self‐similarity in silty and sandy soils: the fractal approach , 1991 .

[54]  Theoretical concepts for fractal growth , 1989 .

[55]  L. D. Cola Fractal analysis of a classified landsat scene , 1989 .

[56]  Li Baillian,et al.  Pansystems analysis: A new approach to ecosystem modelling , 1986 .

[57]  Benoit B. Mandelbrot,et al.  Fractal geometry: what is it, and what does it do? , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[58]  B. Zeide,et al.  Fractal dimensions of tree crowns in three loblolly pine plantations of coastal South Carolina , 1991 .

[59]  J. Muzy,et al.  Complex fractal dimensions describe the hierarchical structure of diffusion-limited-aggregate clusters. , 1996, Physical review letters.

[60]  K. Ito,et al.  Self-organisation of living systems towards criticality at the edge of chaos. , 1994, Bio Systems.

[61]  S. Levin,et al.  Ecosystem Analysis and Prediction , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[62]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[63]  Ramón Margalef Perspectives in Ecological Theory , 1968 .

[64]  S. Arom,et al.  African polyphony and polyrhythm: Description and analysis , 1991 .

[65]  K. Knight Stable Non-Gaussian Random Processes Gennady Samorodnitsky and Murad S. Taqqu Chapman and Hall, 1994 , 1997, Econometric Theory.

[66]  P. Legendre,et al.  Developments in Numerical Ecology , 1988 .

[67]  Boris Zeide,et al.  Fractal geometry in forestry applications , 1991 .

[68]  R. Miller,et al.  On the Stable Paretian Behavior of Stock-Market Prices , 1974 .

[69]  R. Paine,et al.  Intertidal Landscapes: Disturbance and the Dynamics of Pattern , 1981 .

[70]  Steward T. A. Pickett,et al.  The Ecology of Natural Disturbance and Patch Dynamics , 1985 .

[71]  J. Wiens Ecology 2000: An Essay on Future Directions in Ecology , 1992, The Bulletin of the Ecological Society of America.

[72]  J. D. Rougharden Patchiness in the Spatial Distribution of a Population Caused by Stochastic Fluctuations in Resources , 1977 .

[73]  G Sugihara,et al.  Applications of fractals in ecology. , 1990, Trends in ecology & evolution.

[74]  M. Goodchild,et al.  The Fractal Nature of Geographic Phenomena , 1987 .

[75]  Peter Pfeifer,et al.  A Method for Estimation of Fractal Dimension of Tree Crowns , 1991, Forest Science.

[76]  Scott W. Tyler,et al.  Fractal processes in soil water retention , 1990 .

[77]  P. Grassberger,et al.  Measuring the Strangeness of Strange Attractors , 1983 .

[78]  P. Burrough Fractal dimensions of landscapes and other environmental data , 1981, Nature.

[79]  Evaluating small-format photogrammetry for forest and wildlife surveys: Euclidean vs. fractal geometry. , 1990 .

[80]  Bruce T. Milne,et al.  Lessons from applying fractal models to landscape patterns , 1991 .

[81]  Ganapati P. Patil,et al.  PROBING ENCOUNTERED DATA, META ANALYSIS AND WEIGHTED DISTRIBUTION METHODS , 1989 .

[82]  Jacques Demongeot,et al.  Dynamical Systems and Cellular Automata , 1985 .

[83]  Benoit B. Mandelbrot,et al.  Negative fractal dimensions and multifractals , 1990 .

[84]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[85]  Robert C. Maggio,et al.  Autogenic succession in a subtropical savanna: conversion of grassland to thorn woodland , 1988 .

[86]  S. Lovejoy,et al.  Fractal characterization of inhomogeneous geophysical measuring networks , 1986, Nature.

[87]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[88]  M. Palmer,et al.  The Coexistence of Species in Fractal Landscapes , 1992, The American Naturalist.

[89]  S. James Taylor,et al.  Mathematical Proceedings of the Cambridge Philosophical Society The measure theory of random fractals , 2022 .

[90]  Bai-Lian Li,et al.  Weighted mean patch size: a robust index for quantifying landscape structure , 1997 .

[91]  D. Malon,et al.  Microbial transport through heterogeneous porous media: random walk, fractal, and percolation approaches , 1996 .

[92]  Russell Reeve,et al.  A warning about standard errors when estimating the fractal dimension , 1992 .

[93]  B. Milne Measuring the fractal geometry of landscapes , 1988 .

[94]  R. Gardner,et al.  Quantitative Methods in Landscape Ecology , 1991 .