An Adaptive Multilevel Monte Carlo Method with Stochastic Bounds for Quantities of Interest with Uncertain Data

The focus of this work is the introduction of some computable a posteriori error control to the popular multilevel Monte Carlo sampling for PDE with stochastic data. We are especially interested in applications where some quantity of interest should be estimated accurately. Based on a spatial discretization by the finite element method, a goal functional is defined which encodes the quantity of interest. The devised goal-oriented a posteriori error estimator enables one to determine guaranteed path-wise a posteriori error bounds for this quantity. An adaptive algorithm is proposed which employs the computed error estimates and adaptive meshes to control the approximation error. Moreover, the stochastic error is controlled such that the determined bounds are guaranteed in probability. The approach allows for the adaptive refinement of the mesh hierarchy used in the multilevel Monte Carlo simulation which is used for a problem-dependent construction of discretization levels. Numerical experiments illustrate...

[1]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[2]  W. Feller,et al.  An Introduction to Probability Theory and Its Application. , 1951 .

[3]  Mark Ainsworth,et al.  A Posteriori Error Estimation for Lowest Order Raviart-Thomas Mixed Finite Elements , 2007, SIAM J. Sci. Comput..

[4]  Johannes Neumann,et al.  Aspects of Guaranteed Error Control in CPDEs , 2013 .

[5]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[6]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[7]  Claude Jeffrey Gittelson,et al.  Adaptive stochastic Galerkin FEM , 2013 .

[8]  Ivo Babuška,et al.  The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .

[9]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[10]  Serge Prudhomme,et al.  On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .

[11]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[12]  Dietrich Braess,et al.  An a posteriori error estimate and a comparison theorem for the nonconforming P1 element , 2009 .

[13]  Guannan Zhang,et al.  Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.

[14]  Fabio Nobile,et al.  Optimization of mesh hierarchies in multilevel Monte Carlo samplers , 2014, Stochastics and Partial Differential Equations Analysis and Computations.

[15]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[16]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[17]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[18]  Frances Y. Kuo,et al.  Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..

[19]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[20]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[21]  Christian Merdon,et al.  Aspects of guaranteed error control in computations for partial differential equations , 2013 .

[22]  S.,et al.  " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .

[23]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[24]  R. Laugesen,et al.  Minimizing Neumann fundamental tones of triangles: An optimal Poincaré inequality , 2009, 0907.1552.

[25]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[26]  Fabio Nobile,et al.  Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.

[27]  Andrea Barth,et al.  Multilevel Monte Carlo method for parabolic stochastic partial differential equations , 2012 .

[28]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[29]  R. Tempone,et al.  A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.

[30]  Rolf Stenberg,et al.  The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem , 2013, Numerische Mathematik.

[31]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[32]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[33]  Daniel Elfverson,et al.  A Multilevel Monte Carlo Method for Computing Failure Probabilities , 2014, SIAM/ASA J. Uncertain. Quantification.

[34]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[35]  Mario S. Mommer,et al.  A Goal-Oriented Adaptive Finite Element Method with Convergence Rates , 2009, SIAM J. Numer. Anal..