An Adaptive Multilevel Monte Carlo Method with Stochastic Bounds for Quantities of Interest with Uncertain Data
暂无分享,去创建一个
[1] Elisabeth Ullmann,et al. Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.
[2] W. Feller,et al. An Introduction to Probability Theory and Its Application. , 1951 .
[3] Mark Ainsworth,et al. A Posteriori Error Estimation for Lowest Order Raviart-Thomas Mixed Finite Elements , 2007, SIAM J. Sci. Comput..
[4] Johannes Neumann,et al. Aspects of Guaranteed Error Control in CPDEs , 2013 .
[5] Ivo Babuška,et al. The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .
[6] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[7] Claude Jeffrey Gittelson,et al. Adaptive stochastic Galerkin FEM , 2013 .
[8] Ivo Babuška,et al. The post‐processing approach in the finite element method—Part 2: The calculation of stress intensity factors , 1984 .
[9] M. Bebendorf. A Note on the Poincaré Inequality for Convex Domains , 2003 .
[10] Serge Prudhomme,et al. On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors , 1999 .
[11] Robert Scheichl,et al. Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..
[12] Dietrich Braess,et al. An a posteriori error estimate and a comparison theorem for the nonconforming P1 element , 2009 .
[13] Guannan Zhang,et al. Stochastic finite element methods for partial differential equations with random input data* , 2014, Acta Numerica.
[14] Fabio Nobile,et al. Optimization of mesh hierarchies in multilevel Monte Carlo samplers , 2014, Stochastics and Partial Differential Equations Analysis and Computations.
[15] Frances Y. Kuo,et al. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.
[16] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[17] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[18] Frances Y. Kuo,et al. Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications , 2011, J. Comput. Phys..
[19] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[20] Carsten Carstensen,et al. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.
[21] Christian Merdon,et al. Aspects of guaranteed error control in computations for partial differential equations , 2013 .
[22] S.,et al. " Goal-Oriented Error Estimation and Adaptivity for the Finite Element Method , 1999 .
[23] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[24] R. Laugesen,et al. Minimizing Neumann fundamental tones of triangles: An optimal Poincaré inequality , 2009, 0907.1552.
[25] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[26] Fabio Nobile,et al. Multi-index Monte Carlo: when sparsity meets sampling , 2014, Numerische Mathematik.
[27] Andrea Barth,et al. Multilevel Monte Carlo method for parabolic stochastic partial differential equations , 2012 .
[28] Hermann G. Matthies,et al. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .
[29] R. Tempone,et al. A continuation multilevel Monte Carlo algorithm , 2014, BIT Numerical Mathematics.
[30] Rolf Stenberg,et al. The multi-level Monte Carlo finite element method for a stochastic Brinkman Problem , 2013, Numerische Mathematik.
[31] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[32] K. A. Cliffe,et al. Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..
[33] Daniel Elfverson,et al. A Multilevel Monte Carlo Method for Computing Failure Probabilities , 2014, SIAM/ASA J. Uncertain. Quantification.
[34] Andrea Barth,et al. Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.
[35] Mario S. Mommer,et al. A Goal-Oriented Adaptive Finite Element Method with Convergence Rates , 2009, SIAM J. Numer. Anal..