Adsorption of monovalent metal atoms on graphene: a theoretical approach
暂无分享,去创建一个
P. Medeiros | Caio M C de Castilho | C. M. D. de Castilho | Paulo V C Medeiros | F de Brito Mota | Artur J S Mascarenhas | F. de Brito Mota | A. Mascarenhas | C. D. de Castilho
[1] Chih-Kai Yang. A metallic graphene layer adsorbed with lithium , 2009 .
[2] Kresse,et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.
[3] Payne,et al. Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.
[4] K. Novoselov,et al. Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane , 2008, Science.
[5] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[6] G. Kresse,et al. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .
[7] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[8] G. Barber,et al. Graphane: a two-dimensional hydrocarbon , 2006, cond-mat/0606704.
[9] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[10] N. A. Cordero,et al. Interaction of lithium with graphene: An ab initio study , 2004 .
[11] B. Gu,et al. Tremendous spin-splitting effects in open boron nitride nanotubes: application to nanoscale spintronic devices. , 2006, Journal of the American Chemical Society.
[12] Jean-Christophe Charlier,et al. Electronic and transport properties of nanotubes , 2007 .
[13] H. Dai,et al. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.
[14] R. Feynman. Forces in Molecules , 1939 .
[15] P. Kim,et al. Energy band-gap engineering of graphene nanoribbons. , 2007, Physical review letters.
[16] Blöchl,et al. Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.
[17] P. Schleyer,et al. Lithium chemistry : a theoretical and experimental overview , 1995 .
[18] Alex Savchenko,et al. Transforming Graphene , 2009, Science.
[19] S. Lebègue,et al. A c cu ra te e lec tr o n ic ban d gap o f pu re and fu n ctio n a lized grap h an e from G W c a lcu la tio n s , 2009, 0903.0310.
[20] Marvin L. Cohen,et al. First-principles study of metal adatom adsorption on graphene , 2008 .
[21] Hafner,et al. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.
[22] Andre K. Geim,et al. Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.
[23] G. Kresse,et al. Ab initio molecular dynamics for liquid metals. , 1993 .
[24] J. Zhong,et al. Density functional calculation of transition metal adatom adsorption on graphene , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.
[25] Andre K. Geim,et al. The rise of graphene. , 2007, Nature materials.
[26] H. Rafii-Tabar,et al. Energy gap opening in submonolayer lithium on graphene: Local density functional and tight-binding calculations , 2009, 0901.0310.
[27] P. Fuentealba,et al. Polarizabilities and hyperpolarizabilities of the alkali metal atoms , 1993 .