An Object-Oriented Algorithmic Laboratory for Ordering Sparse Matrices
暂无分享,去创建一个
[1] Ian P. King,et al. An automatic reordering scheme for simultaneous equations derived from network systems , 1970 .
[2] Stanley C. Eisenstat,et al. Yale sparse matrix package I: The symmetric codes , 1982 .
[3] I. Duff,et al. THE USE OF PROFILE REDUCTION ALGORITHMS WITH A FRONTAL CODE , 1989 .
[4] Ümit V. Çatalyürek,et al. Decomposing Irregularly Sparse Matrices for Parallel Matrix-Vector Multiplication , 1996, IRREGULAR.
[5] L. Vu Quoc,et al. Automatic node resequencing with constraints , 1984 .
[6] Shashi Shekhar,et al. Spatial Databases - Accomplishments and Research Needs , 1999, IEEE Trans. Knowl. Data Eng..
[7] Bruce Hendrickson,et al. An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..
[8] John R. Gilbert,et al. Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..
[9] A. George,et al. On the application of the minimum degree algorithm to finite element systems , 1978 .
[10] Norman E. Gibbs,et al. Algorithm 509: A Hybrid Profile Reduction Algorithm [F1] , 1976, TOMS.
[11] Tamara G. Kolda,et al. Partitioning Rectangular and Structurally Unsymmetric Sparse Matrices for Parallel Processing , 1999, SIAM J. Sci. Comput..
[12] Bojan Mohar,et al. Laplace eigenvalues and bandwidth-type invariants of graphs , 1993, J. Graph Theory.
[13] I. Duff,et al. The effect of ordering on preconditioned conjugate gradients , 1989 .
[14] Gary L. Miller,et al. Automatic Mesh Partitioning , 1992 .
[15] R. Tarjan,et al. A Separator Theorem for Planar Graphs , 1977 .
[16] Richard F. Barrett,et al. Matrix Market: a web resource for test matrix collections , 1996, Quality of Numerical Software.
[17] E. Cuthill,et al. Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.
[18] S. Sloan. An algorithm for profile and wavefront reduction of sparse matrices , 1986 .
[19] Bruce Hendrickson,et al. Graph Partitioning and Parallel Solvers: Has the Emperor No Clother? (Extended Abstract) , 1998, IRREGULAR.
[20] Bojan Mohar,et al. Optimal linear labelings and eigenvalues of graphs , 1992, Discret. Appl. Math..
[21] Michael J. Vilot,et al. Standard template library , 1996 .
[22] Timothy A. Davis,et al. A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.
[23] Cleve Ashcraft,et al. Compressed Graphs and the Minimum Degree Algorithm , 1995, SIAM J. Sci. Comput..
[24] Bruce Hendrickson,et al. Effective Sparse Matrix Ordering: Just Around the BEND , 1997, PPSC.
[25] M. Fiedler. Algebraic connectivity of graphs , 1973 .
[26] Alex Pothen,et al. PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .
[27] A. H. Sherman,et al. Comparative Analysis of the Cuthill–McKee and the Reverse Cuthill–McKee Ordering Algorithms for Sparse Matrices , 1976 .
[28] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .
[29] Alan George,et al. An Implementation of a Pseudoperipheral Node Finder , 1979, TOMS.
[30] Bruce Hendrickson,et al. The Chaco user`s guide. Version 1.0 , 1993 .
[31] Scott Meyers,et al. More Effective C++: 35 New Ways to Improve Your Programs and Designs , 1995 .
[32] Padma Raghavan,et al. Performance of Greedy Ordering Heuristics for Sparse Cholesky Factorization , 1999, SIAM J. Matrix Anal. Appl..
[33] Joseph W. H. Liu,et al. Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.
[34] Xiaoye Sherry Li,et al. Sparse Gaussian Elimination on High Performance Computers , 1996 .
[35] Alexander A. Stepanov,et al. C++ Standard Template Library , 2000 .
[36] Patrick R. Amestoy,et al. An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..
[37] John Stuart Lakos,et al. Large-Scale C++ Software Design , 1996 .
[38] P. Berman,et al. On the performance of the minimum degree ordering for Gaussian elimination , 1990 .
[39] Pinar Heggernes,et al. A practical algorithm for making filled graphs minimal , 2001, Theor. Comput. Sci..
[40] S. Eisenstat,et al. Node Selection Strategies for Bottom-Up Sparse Matrix Ordering , 1998, SIAM J. Matrix Anal. Appl..
[41] John G. Lewis. Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms , 1982, TOMS.
[42] C. Bornstein. Parallelizing and de-parallelizing elimination orders , 1998 .
[43] Florin Dobrian,et al. Object-Oriented Design for Sparse Direct Solvers , 1998, ISCOPE.
[44] Cleve Ashcraft,et al. SPOOLES: An Object-Oriented Sparse Matrix Library , 1999, PPSC.
[45] William G. Poole,et al. An algorithm for reducing the bandwidth and profile of a sparse matrix , 1976 .
[46] H. D. Simon,et al. A spectral algorithm for envelope reduction of sparse matrices , 1993, Supercomputing '93. Proceedings.
[47] John Reid,et al. Ordering symmetric sparse matrices for small profile and wavefront , 1999 .
[48] Ralph Johnson,et al. design patterns elements of reusable object oriented software , 2019 .
[49] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[50] M. Yannakakis. Computing the Minimum Fill-in is NP^Complete , 1981 .
[51] A. Pothen,et al. Two improved algorithms for envelope and wavefront reduction , 1997 .
[52] Timothy A. Davis,et al. An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .
[53] Alan George,et al. A Fast Implementation of the Minimum Degree Algorithm Using Quotient Graphs , 1980, TOMS.
[54] C. Jordan. Sur les assemblages de lignes. , 1869 .
[55] Philip N. Klein,et al. Cutting down on Fill Using Nested Dissection: Provably Good Elimination Orderings , 1993 .