Equational Properties of Kleene Algebras of Relations with Conversion

Abstract We describe a set of equational axioms for the variety generated by all algebras of binary relations with operations of union, composition, conversion and reflexive-transitive closure and neutral elements 0 (the empty relation) and 1 (the identity relation).

[1]  Zoltán Ésik,et al.  Equational axioms for regular sets , 1993, Mathematical Structures in Computer Science.

[2]  Zoltán Ésik,et al.  Matrix and Matricial Iteration Theories, Part I , 1993, J. Comput. Syst. Sci..

[3]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[4]  Dexter Kozen A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events , 1994, Inf. Comput..

[5]  Z. Ésik,et al.  Notes on equational theories of relations , 1995 .

[6]  Daniel Krob,et al.  Complete Systems of B-Rational Identities , 1991, Theor. Comput. Sci..

[7]  Arto Salomaa,et al.  Two Complete Axiom Systems for the Algebra of Regular Events , 1966, JACM.

[8]  Hajnal Andréka,et al.  Representations of distributive lattice-ordered semigroups with binary relations , 1991 .

[9]  J. Conway Regular algebra and finite machines , 1971 .

[10]  Maurice Boffa,et al.  Une remarque sur les systèmes complets d'identités rationnelles , 1990, RAIRO Theor. Informatics Appl..

[11]  Alfred Tarski,et al.  Relational selves as self-affirmational resources , 2008 .

[12]  Sinisa Crvenkovic,et al.  On Kleene Algebras , 1993, Theor. Comput. Sci..

[13]  Ferenc Gécseg,et al.  Algebraic theory of automata , 1972 .

[14]  Z. Ésik,et al.  Iteration Theories: The Equational Logic of Iterative Processes , 1993 .

[15]  Matthias Jantzen,et al.  Confluent String Rewriting , 1988, EATCS Monographs on Theoretical Computer Science.

[16]  Vaughan R. Pratt,et al.  Dynamic algebras as a well-behaved fragment of relation algebras , 1988, Algebraic Logic and Universal Algebra in Computer Science.

[17]  Dexter Kozen,et al.  A completeness theorem for Kleene algebras and the algebra of regular events , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.