Computing in the Presence of Concurrent Solo Executions

In a wait-free model any number of processes may crash. A process runs solo when it computes its local output without receiving any information from other processes, either because they crashed or they are too slow. While in wait-free shared-memory models at most one process may run solo in an execution, any number of processes may have to run solo in an asynchronous wait-free message-passing model.

[1]  E. C. Zeeman,et al.  Relative simplicial approximation , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[3]  Nissim Francez,et al.  Decomposition of Distributed Programs into Communication-Closed Layers , 1982, Sci. Comput. Program..

[4]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1983, PODS '83.

[5]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[6]  Nancy A. Lynch,et al.  Reaching approximate agreement in the presence of faults , 1986, JACM.

[7]  Hagit Attiya,et al.  Sharing memory robustly in message-passing systems , 1990, PODC '90.

[8]  Hagit Attiya,et al.  Renaming in an asynchronous environment , 1990, JACM.

[9]  Maurice Herlihy,et al.  Wait-free synchronization , 1991, TOPL.

[10]  Eli Gafni,et al.  Immediate atomic snapshots and fast renaming , 1993, PODC '93.

[11]  Soma Chaudhuri,et al.  More Choices Allow More Faults: Set Consensus Problems in Totally Asynchronous Systems , 1993, Inf. Comput..

[12]  Eli Gafni,et al.  Generalized FLP impossibility result for t-resilient asynchronous computations , 1993, STOC.

[13]  Maurice Herlihy,et al.  The decidability of distributed decision tasks (extended abstract) , 1997, STOC '97.

[14]  Eli Gafni,et al.  A simple algorithmically reasoned characterization of wait-free computation (extended abstract) , 1997, PODC '97.

[15]  Hagit Attiya,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 1998 .

[16]  Maurice Herlihy,et al.  The topological structure of asynchronous computability , 1999, JACM.

[17]  Michael E. Saks,et al.  Wait-free k-set agreement is impossible: the topology of public knowledge , 1993, STOC.

[18]  Nancy A. Lynch,et al.  The BG distributed simulation algorithm , 2001, Distributed Computing.

[19]  Marcin Paprzycki,et al.  Distributed Computing: Fundamentals, Simulations and Advanced Topics , 2001, Scalable Comput. Pract. Exp..

[20]  Maurice Herlihy,et al.  A classification of wait-free loop agreement tasks , 2003, Theor. Comput. Sci..

[21]  Maurice Herlihy,et al.  The topology of shared-memory adversaries , 2010, PODC '10.

[22]  Sergio Rajsbaum,et al.  New combinatorial topology bounds for renaming: the lower bound , 2010, Distributed Computing.

[23]  Sergio Rajsbaum,et al.  Iterated Shared Memory Models , 2010, LATIN.

[24]  Eli Gafni,et al.  Distributed Programming with Tasks , 2010, OPODIS.

[25]  Maria Gradinariu Potop-Butucaru,et al.  Distributed Computing with Mobile Robots: An Introductory Survey , 2011, 2011 14th International Conference on Network-Based Information Systems.

[26]  Michel Raynal,et al.  The renaming problem in shared memory systems: An introduction , 2011, Comput. Sci. Rev..

[27]  Parosh Aziz Abdulla,et al.  Advanced Ramsey-Based Büchi Automata Inclusion Testing , 2011, CONCUR.

[28]  Rachid Guerraoui,et al.  Generalized Universality , 2011, CONCUR.

[29]  Dmitry N. Kozlov,et al.  Chromatic subdivision of a simplicial complex , 2012 .

[30]  Nicola Santoro,et al.  Distributed Computing by Oblivious Mobile Robots , 2012, Synthesis Lectures on Distributed Computing Theory.

[31]  Pavol Hell,et al.  Interval graphs, adjusted interval digraphs, and reflexive list homomorphisms , 2012, Discret. Appl. Math..

[32]  Michel Raynal,et al.  Concurrent Programming: Algorithms, Principles, and Foundations , 2012, Springer Berlin Heidelberg.

[33]  Michel Raynal,et al.  Power and limits of distributed computing shared memory models , 2013, Theor. Comput. Sci..

[34]  Carole Delporte-Gallet,et al.  Black Art: Obstruction-Free k-set Agreement with |MWMR registers| < |proccesses| , 2013, NETYS.

[35]  Nitin H. Vaidya,et al.  Byzantine vector consensus in complete graphs , 2013, PODC '13.

[36]  Maurice Herlihy,et al.  Multidimensional approximate agreement in Byzantine asynchronous systems , 2013, STOC '13.

[37]  R. Ho Algebraic Topology , 2022 .