Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios
暂无分享,去创建一个
[1] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[2] C. Englert,et al. The Ĥ-parameter: an oblique Higgs view , 2019, Journal of High Energy Physics.
[3] Ling Zhu. New Mitrinović–Adamović type inequalities , 2020 .
[4] J. M. Ceniceros,et al. Bernoulli–Dunkl and Euler–Dunkl polynomials and their generalizations , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.
[5] Ling Zhu. Monotonicities of some functions involving multiple logarithm function and their applications , 2020 .
[6] Feng Qi (祁锋),et al. Some Determinantal Expressions and Recurrence Relations of the Bernoulli Polynomials , 2016 .
[7] Feng Qi,et al. Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind , 2013, J. Comput. Appl. Math..
[8] H. van Haeringen,et al. Completely Monotonic and Related Functions , 1996 .
[9] Feng Qi (祁锋),et al. Monotonicity properties for a ratio of finite many gamma functions , 2020, Advances in Difference Equations.
[10] M. Merca. Bernoulli numbers and symmetric functions , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.
[11] M. J. Dubourdieu. Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes , 1940 .
[12] Zhongdi Cen,et al. Some identities involving exponential functions and Stirling numbers and applications , 2014, J. Comput. Appl. Math..
[13] A Probabilistic Proof for Representations of the Riemann Zeta Function , 2019, Mathematics.
[14] Feng Qi (祁锋),et al. A ratio of finitely many gamma functions and its properties with applications , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.
[15] Feng Qi,et al. Some identities and an explicit formula for Bernoulli and Stirling numbers , 2014, J. Comput. Appl. Math..
[16] Hua-feng Ge,et al. New Sharp Bounds for the Bernoulli Numbers and Refinement of Becker-Stark Inequalities , 2012, J. Appl. Math..
[17] New approximation inequalities for circular functions , 2018, Journal of inequalities and applications.
[18] Feng Qi (祁锋),et al. Generalization of Bernoulli polynomials , 2002 .
[19] Feng Qi,et al. An explicit formula for Bernoulli polynomials in terms of $\boldsymbol r$-Stirling numbers of the second kind , 2014, 1402.2340.
[20] The Cusa-Huygens inequality revisited , 2020 .
[21] Ling Zhu. New bounds for the ratio of two adjacent even-indexed Bernoulli numbers , 2020 .
[22] Takao Komatsu,et al. Generalized hypergeometric Bernoulli numbers , 2021 .
[23] Ling Zhu,et al. Refinements of Huygens- and Wilker- type inequalities , 2020 .
[24] T. Komatsu. A parametric type of Bernoulli polynomials with level 3 , 2020, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.
[25] Feng Qi (祁锋). Completely monotonic degree of a function involving trigamma and tetragamma functions , 2013, 1301.0154.
[26] Ling Zhu. Some new bounds for Sinc function by simultaneous approximation of the base and exponential functions , 2020, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.
[27] Feng Qi (祁锋),et al. Some inequalities constructed by Tchebysheff's integral inequality , 1999 .
[28] Y. Simsek,et al. Some new identities and inequalities for Bernoulli polynomials and numbers of higher order related to the Stirling and Catalan numbers , 2020, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.
[29] D. S. Mitrinovic,et al. Classical and New Inequalities in Analysis , 1992 .
[30] Feng Qi (祁锋),et al. Two Nice Determinantal Expressions and A Recurrence Relation for the Apostol--Bernoulli Polynomials , 2017 .
[31] H. W. Gould,et al. Combinatorial Identities for Stirling Numbers: The Unpublished Notes of H W Gould , 2015 .
[32] Feng Qi (祁锋),et al. Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions , 2020, Applicable Analysis and Discrete Mathematics.
[33] Ling Zhu,et al. A class of strongly completely monotonic functions related to gamma function , 2020, J. Comput. Appl. Math..
[34] H. Alzer,et al. Sharp bounds for the Bernoulli numbers , 2000 .
[35] Ciro D'aniello. On some inequalities for the Bernoulli numbers , 1994 .
[36] Diagonal recurrence relations, inequalities, and monotonicity related to Stirling numbers , 2014, 1402.2040.
[37] D. Widder,et al. The Laplace Transform , 1943, The Mathematical Gazette.
[39] Robin J. Chapman,et al. Two closed forms for the Bernoulli polynomials , 2015, 1506.02137.
[40] D. Leeming,et al. The real zeros of the Vernoulli polynomials , 1989 .
[41] Bai-Ni Guo (郭白妮),et al. Complete Monotonicity of Functions Connected with the Exponential Function and Derivatives , 2014 .
[42] Feng Qi,et al. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers , 2019, J. Comput. Appl. Math..
[43] Zhen-Hang Yang,et al. Sharp bounds for the ratio of two zeta functions , 2020, J. Comput. Appl. Math..
[44] Sharp inequalities for hyperbolic functions and circular functions , 2019, Journal of Inequalities and Applications.
[45] Feng Qi (祁锋). An Explicit Formula for the Bell Numbers in Terms of the Lah and Stirling Numbers , 2014, 1401.1625.
[46] Feng Qi,et al. Notes on a Double Inequality for Ratios of any Two Neighbouring Non-zero Bernoulli Numbers , 2018, Turkish Journal of Analysis and Number Theory.
[47] A. Xu,et al. Qi’s conjectures on completely monotonic degrees of remainders of asymptotic formulas of di- and trigamma functions , 2020 .