Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios

In the paper, with the aid of the Cebysev integral inequality, by virtue of the integral representation of the Riemann zeta function, with the use of two properties of a function and its derivatives involving the exponential function and the Stirling numbers of the second kind, by means of complete monotonicity, the authors establish logarithmic convexity and increasing property of four sequences involving the Bernoulli numbers and their ratios.

[1]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[2]  C. Englert,et al.  The Ĥ-parameter: an oblique Higgs view , 2019, Journal of High Energy Physics.

[3]  Ling Zhu New Mitrinović–Adamović type inequalities , 2020 .

[4]  J. M. Ceniceros,et al.  Bernoulli–Dunkl and Euler–Dunkl polynomials and their generalizations , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[5]  Ling Zhu Monotonicities of some functions involving multiple logarithm function and their applications , 2020 .

[6]  Feng Qi (祁锋),et al.  Some Determinantal Expressions and Recurrence Relations of the Bernoulli Polynomials , 2016 .

[7]  Feng Qi,et al.  Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind , 2013, J. Comput. Appl. Math..

[8]  H. van Haeringen,et al.  Completely Monotonic and Related Functions , 1996 .

[9]  Feng Qi (祁锋),et al.  Monotonicity properties for a ratio of finite many gamma functions , 2020, Advances in Difference Equations.

[10]  M. Merca Bernoulli numbers and symmetric functions , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[11]  M. J. Dubourdieu Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes , 1940 .

[12]  Zhongdi Cen,et al.  Some identities involving exponential functions and Stirling numbers and applications , 2014, J. Comput. Appl. Math..

[13]  A Probabilistic Proof for Representations of the Riemann Zeta Function , 2019, Mathematics.

[14]  Feng Qi (祁锋),et al.  A ratio of finitely many gamma functions and its properties with applications , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[15]  Feng Qi,et al.  Some identities and an explicit formula for Bernoulli and Stirling numbers , 2014, J. Comput. Appl. Math..

[16]  Hua-feng Ge,et al.  New Sharp Bounds for the Bernoulli Numbers and Refinement of Becker-Stark Inequalities , 2012, J. Appl. Math..

[17]  New approximation inequalities for circular functions , 2018, Journal of inequalities and applications.

[18]  Feng Qi (祁锋),et al.  Generalization of Bernoulli polynomials , 2002 .

[19]  Feng Qi,et al.  An explicit formula for Bernoulli polynomials in terms of $\boldsymbol r$-Stirling numbers of the second kind , 2014, 1402.2340.

[20]  The Cusa-Huygens inequality revisited , 2020 .

[21]  Ling Zhu New bounds for the ratio of two adjacent even-indexed Bernoulli numbers , 2020 .

[22]  Takao Komatsu,et al.  Generalized hypergeometric Bernoulli numbers , 2021 .

[23]  Ling Zhu,et al.  Refinements of Huygens- and Wilker- type inequalities , 2020 .

[24]  T. Komatsu A parametric type of Bernoulli polynomials with level 3 , 2020, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[25]  Feng Qi (祁锋) Completely monotonic degree of a function involving trigamma and tetragamma functions , 2013, 1301.0154.

[26]  Ling Zhu Some new bounds for Sinc function by simultaneous approximation of the base and exponential functions , 2020, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[27]  Feng Qi (祁锋),et al.  Some inequalities constructed by Tchebysheff's integral inequality , 1999 .

[28]  Y. Simsek,et al.  Some new identities and inequalities for Bernoulli polynomials and numbers of higher order related to the Stirling and Catalan numbers , 2020, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[29]  D. S. Mitrinovic,et al.  Classical and New Inequalities in Analysis , 1992 .

[30]  Feng Qi (祁锋),et al.  Two Nice Determinantal Expressions and A Recurrence Relation for the Apostol--Bernoulli Polynomials , 2017 .

[31]  H. W. Gould,et al.  Combinatorial Identities for Stirling Numbers: The Unpublished Notes of H W Gould , 2015 .

[32]  Feng Qi (祁锋),et al.  Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions , 2020, Applicable Analysis and Discrete Mathematics.

[33]  Ling Zhu,et al.  A class of strongly completely monotonic functions related to gamma function , 2020, J. Comput. Appl. Math..

[34]  H. Alzer,et al.  Sharp bounds for the Bernoulli numbers , 2000 .

[35]  Ciro D'aniello On some inequalities for the Bernoulli numbers , 1994 .

[36]  Diagonal recurrence relations, inequalities, and monotonicity related to Stirling numbers , 2014, 1402.2040.

[37]  D. Widder,et al.  The Laplace Transform , 1943, The Mathematical Gazette.

[39]  Robin J. Chapman,et al.  Two closed forms for the Bernoulli polynomials , 2015, 1506.02137.

[40]  D. Leeming,et al.  The real zeros of the Vernoulli polynomials , 1989 .

[41]  Bai-Ni Guo (郭白妮),et al.  Complete Monotonicity of Functions Connected with the Exponential Function and Derivatives , 2014 .

[42]  Feng Qi,et al.  A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers , 2019, J. Comput. Appl. Math..

[43]  Zhen-Hang Yang,et al.  Sharp bounds for the ratio of two zeta functions , 2020, J. Comput. Appl. Math..

[44]  Sharp inequalities for hyperbolic functions and circular functions , 2019, Journal of Inequalities and Applications.

[45]  Feng Qi (祁锋) An Explicit Formula for the Bell Numbers in Terms of the Lah and Stirling Numbers , 2014, 1401.1625.

[46]  Feng Qi,et al.  Notes on a Double Inequality for Ratios of any Two Neighbouring Non-zero Bernoulli Numbers , 2018, Turkish Journal of Analysis and Number Theory.

[47]  A. Xu,et al.  Qi’s conjectures on completely monotonic degrees of remainders of asymptotic formulas of di- and trigamma functions , 2020 .