Geodetic methods to determine the relativistic redshift at the level of 10$$^{-18}$$-18 in the context of international timescales: a review and practical results

The frequency stability and uncertainty of the latest generation of optical atomic clocks is now approaching the one part in $$10^{18}$$1018 level. Comparisons between earthbound clocks at rest must account for the relativistic redshift of the clock frequencies, which is proportional to the corresponding gravity (gravitational plus centrifugal) potential difference. For contributions to international timescales, the relativistic redshift correction must be computed with respect to a conventional zero potential value in order to be consistent with the definition of Terrestrial Time. To benefit fully from the uncertainty of the optical clocks, the gravity potential must be determined with an accuracy of about $$0.1\,\hbox {m}^{2}\,\hbox {s}^{-2}$$0.1m2s-2, equivalent to about 0.01 m in height. This contribution focuses on the static part of the gravity field, assuming that temporal variations are accounted for separately by appropriate reductions. Two geodetic approaches are investigated for the derivation of gravity potential values: geometric levelling and the Global Navigation Satellite Systems (GNSS)/geoid approach. Geometric levelling gives potential differences with millimetre uncertainty over shorter distances (several kilometres), but is susceptible to systematic errors at the decimetre level over large distances. The GNSS/geoid approach gives absolute gravity potential values, but with an uncertainty corresponding to about 2 cm in height. For large distances, the GNSS/geoid approach should therefore be better than geometric levelling. This is demonstrated by the results from practical investigations related to three clock sites in Germany and one in France. The estimated uncertainty for the relativistic redshift correction at each site is about $$2 \times 10^{-18}$$2×10-18.

[1]  Z. Altamimi,et al.  ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions , 2016 .

[2]  Davide Calonico,et al.  Gravitational redshift at INRIM , 2007 .

[3]  Torsten Mayer-Gürr,et al.  EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission , 2014 .

[4]  Sergei A. Klioner,et al.  Geodesy and relativity , 2008 .

[5]  Fritz Riehle,et al.  Optical clock networks , 2017, Nature Photonics.

[6]  Jingfang Huang,et al.  A Gravimetric Geoid Model for Vertical Datum in Canada , 2004 .

[7]  P. K. Seidelmann,et al.  The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement , 2003, astro-ph/0303376.

[8]  Gravity Field Variability, the Geoid, and Ocean Dynamics , 2004 .

[9]  Gerard Petit,et al.  Relativistic theory for clock syntonization and the realization of geocentric coordinate times. , 1995 .

[10]  Marc A. Weiss,et al.  The relativistic redshift with 3×10−17 uncertainty at NIST, Boulder, Colorado, USA , 2003 .

[11]  J. Guéna,et al.  Progress in atomic fountains at LNE-SYRTE , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[12]  J. Lodewyck,et al.  Atomic clocks: new prospects in metrology and geodesy , 2013, 1308.6766.

[13]  Barry F. Kavanagh,et al.  Surveying principles and applications , 1984 .

[14]  Michael H. Soffel,et al.  Space-Time Reference Systems , 2012 .

[15]  S. Holmes,et al.  Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: the Geoid Slope Validation Survey of 2011 , 2013, Journal of Geodesy.

[16]  Heiner Denker,et al.  Regional Gravity Field Modeling: Theory and Practical Results , 2013 .

[17]  Szabolcs Rózsa,et al.  The Geodesist’s Handbook 2016 , 2016, Journal of Geodesy.

[18]  N. K. Pavlis,et al.  A re-evaluation of the relativistic redshift on frequency standards at NIST, Boulder, Colorado, USA , 2014 .

[19]  Torsten Mayer-Gürr,et al.  The combined satellite gravity field model GOCO05s , 2015 .

[20]  S. Stehman,et al.  Accuracy Assessment , 2003 .

[21]  D. Wineland,et al.  Frequency comparison of two high-accuracy Al+ optical clocks. , 2009, Physical review letters.

[22]  R. Lambourne,et al.  Relativity, Gravitation and Cosmology , 2010 .

[23]  Omission Error, Data Requirements, and the Fractal Dimension of the Geoid , 2012 .

[24]  Yvonne Herz,et al.  A First Course In General Relativity , 2016 .

[25]  David E. Smith,et al.  Earth scale below a part per billion from Satellite Laser Ranging , 2000 .

[26]  H. Moritz,et al.  Geodetic reference system 1980 , 1988 .

[27]  Theory and Experiment in Gravitational Physics , 1982 .

[28]  D. Piester,et al.  International timescales with optical clocks (ITOC) , 2013, 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC).

[29]  Z. Altamimi,et al.  ITRF2008: an improved solution of the international terrestrial reference frame , 2011 .

[30]  J Terrien,et al.  NEWS FROM THE BUREAU INTERNATIONAL DES POIDS ET MESURES: Meeting of Section 1 (X- and gamma-ray measurements) of the Comité Consultatif des étalons de mesure des rayonnements ionisants , 1975 .

[31]  H. Ruder,et al.  Relativistic theory of gravimetric measurements and definition of thegeoid. , 1988 .

[32]  H. Margolis Optical frequency standards and clocks , 2010 .

[33]  R. Pound,et al.  Gravitational Red-Shift in Nuclear Resonance , 1959 .

[34]  A. Bjerhammar,et al.  On a relativistic geodesy , 1985 .

[35]  D. Holleville,et al.  Development of a strontium optical lattice clock for the SOC mission on the ISS , 2015 .

[37]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 ( EGM 2008 ) , 2012 .

[38]  Bernard F. Schutz,et al.  A First Course in General Relativity , 2022 .

[39]  Gerard Petit,et al.  Relativistic theory for time comparisons: a review , 2005 .

[40]  B. Guinot Time scales in the context of general relativity , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Mattia Crespi,et al.  VII Hotine-Marussi Symposium on Mathematical Geodesy: Proceedings of the Symposium in Rome, 6-10 June, 2009 , 2012 .

[42]  A. Hamilton Relativity, Gravitation and Cosmology: A Basic Introduction. , 2005 .

[43]  James M. Anderson,et al.  Surveying: Theory and Practice , 1997 .

[44]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[45]  P Giacomo News from the BIPM , 1980 .

[46]  Helen S. Margolis,et al.  Timekeepers of the future , 2014, Nature Physics.

[47]  Peter Wolf,et al.  Relativistic corrections for time and frequency transfer in optical fibres , 2014 .

[48]  Davide Calonico,et al.  Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain , 2014 .

[49]  林 憲二,et al.  C. W. Misner, K. S. Thorne. and J. A. Wheeler : Gravitation, W. H. Freeman, San Francisco, 1973, 1279ページ, 26×21cm, $39.50. , 1975 .

[50]  Ruoxin Li,et al.  Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts , 2011, 1107.2412.

[51]  Great Britain. Parliament Financial support for members of the House of Lords : report of the ad hoc group , 2010 .

[52]  B. Schutz Gravity from the ground up , 2003 .

[53]  Detlef Angermann,et al.  Accuracy Assessment of the ITRS 2008 Realization of DGFI: DTRF2008 , 2013 .

[54]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[55]  The Permanent Tide In Height Systems , 2009 .

[56]  Zuheir Altamimi,et al.  Specifications for reference frame fixing in the analysis of a EUREF GPS campaign , 1998 .

[57]  E. F. Arias,et al.  Atomic time-keeping from 1955 to the present , 2005 .

[58]  R. Rummel,et al.  Strategies for Solving the Vertical Datum Problem Using Terrestrial and Satellite Geodetic Data , 1990 .

[59]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics: Frontmatter , 1993 .

[60]  R. Nelson,et al.  Relativistic time transfer in the vicinity of the Earth and in the solar system , 2011 .

[61]  W. Bosch,et al.  On Estimating the Dynamic Ocean Topography - A Profile Approach , 2010 .

[62]  Elisa Felicitas Arias The metrology of time , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[63]  T L Nicholson,et al.  Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.

[64]  J. Nelson What Is an Atomic Clock , 2019 .

[65]  W. Bosch,et al.  On estimating the dynamic ocean topography , 2010 .

[66]  Thomas Udem,et al.  Optical frequency transfer over a single-span 1840 km fiber link , 2013, CLEO: 2013.

[67]  N Quintin,et al.  A clock network for geodesy and fundamental science , 2016, Nature communications.

[68]  Sergei A. Klioner,et al.  The problem of clock synchronization: A relativistic approach , 1992 .

[69]  Ludger Timmen,et al.  Time-variable gravity potential components for optical clock comparisons and the definition of international time scales , 2016 .

[70]  D. Gray,et al.  Geodetic aspects concerning possible subsidence in southeastern England , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[71]  R. Forsberg Modelling the fine-structure of the geoid: Methods, data requirements and some results , 1993 .

[72]  C Sanner,et al.  Single-Ion Atomic Clock with 3×10(-18) Systematic Uncertainty. , 2016, Physical review letters.

[73]  Jon H. Shirley,et al.  First accuracy evaluation of NIST-F2 , 2014 .

[74]  Beate Klinger,et al.  ITSG-Grace2014: a new GRACE gravity field release computed in Graz , 2014 .

[75]  Gerard Petit,et al.  Atomic time, clocks, and clock comparisons in relativistic spacetime: a review , 2014 .

[76]  K. Mikula,et al.  A conventional value for the geoid reference potential $$W_{0}$$W0 , 2016 .

[77]  J. Kouba A GUIDE TO USING INTERNATIONAL GNSS SERVICE (IGS) PRODUCTS , 2003 .

[78]  Martin Gohlke,et al.  High-Performance Optical Frequency References for Space , 2016 .

[79]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[80]  Peter Teunissen,et al.  Height datum definition, height datum connection and the role of the geodetic boundary value problem , 1988 .

[81]  H. Moritz Advanced Physical Geodesy , 1980 .

[82]  J. Kouba,et al.  Geoidal Geopotential and World Height System , 1999 .