Speech recognition of aged voice in the AAL context: Detection of distress sentences

By 2050, about a third of the French population will be over 65. In the context of technologies development aiming at helping aged people to live independently at home, the CIRDO project aims at implementing an ASR system into a social inclusion product designed for elderly people in order to detect distress situations. Speech recognition systems present higher word error rate when speech is uttered by elderly speakers compared to when non-aged voice is considered. Two specialized corpora in French, AD80 and ERES38, were recorded in this framework by aged people, they were used first to study the possibility of adaptation of standard ASR to aged voice. Then we looked at whether the variability of the WER between speakers could be correlated with the level of dependence. Then, we assessed the performance of distress sentence detection by a filter and we demonstrated a significant drop in performance for those with the lowest degree of autonomy.

[1]  Ana Llena-Nozal,et al.  La prise en charge de la dépendance , 2011 .

[2]  Philippe Truillet,et al.  Etude de l¿effet du vieillissement sur les productions langagières et sur les performances en reconnaissance automatique de la parole , 2004 .

[3]  M. Runo,et al.  Independent Living for Persons with Disabilities , 2012, Les Cahiers d'Afrique de lEst.

[4]  James M. Keller,et al.  A smart home application to eldercare: current status and lessons learned. , 2009, Technology and health care : official journal of the European Society for Engineering and Medicine.

[5]  Arran Holmes,et al.  The iDorm : Gateway to Heterogeneous Networking Environments , 2003 .

[6]  Isabel Trancoso,et al.  Impact of Age in ASR for the Elderly: Preliminary Experiments in European Portuguese , 2012, IberSPEECH.

[7]  Steve Renals,et al.  Longitudinal study of ASR performance on ageing voices , 2008, INTERSPEECH.

[8]  Jay G. Wilpon,et al.  A study of speech recognition for children and the elderly , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[9]  Marc-Eric Bobillier Chaumon,et al.  Démarche de développement de technologies ambiantes pour le maintien à domicile des personnes dépendantes : vers une triangulation des méthodes et des approches , 2012 .

[10]  Diane J. Cook,et al.  Behavior-Based Home Energy Prediction , 2012, 2012 Eighth International Conference on Intelligent Environments.

[11]  K. Burk,et al.  Perceptual and acoustic correlates of aging in the speech of males. , 1974, Journal of communication disorders.

[12]  Michel Vacher,et al.  Information extraction from sound for medical telemonitoring , 2006, IEEE Transactions on Information Technology in Biomedicine.

[13]  Marjorie Skubic,et al.  An acoustic fall detector system that uses sound height information to reduce the false alarm rate , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[14]  Natalie Liberman,et al.  Recognition of elderly speech and voice-driven document retrieval , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[15]  Michel Vacher,et al.  Recognition of voice commands by multisource ASR and noise cancellation in a smart home environment , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[16]  Fabio Brugnara,et al.  Towards age-independent acoustic modeling , 2009, Speech Commun..

[17]  Brigitte Meillon,et al.  Design and evaluation of a smart home voice interface for the elderly: acceptability and objection aspects , 2011, Personal and Ubiquitous Computing.

[18]  Paavo Alku,et al.  7th International Conference on Speech Technology and Human-Computer Dialogue (SpeD 2013), 16-19 Oct 2013, Cluj-Napoca, Romania , 2013 .

[19]  Alex Mihailidis,et al.  Development of an automated speech recognition interface for personal emergency response systems , 2009, Journal of NeuroEngineering and Rehabilitation.

[20]  Stephen S. Intille,et al.  Designing a Home of the Future , 2002, IEEE Pervasive Comput..

[21]  Andreas P. Schmidt,et al.  SOPRANO – An extensible , open AAL platform for elderly people based on semantical contracts 1 , 2008 .

[22]  Ilias Maglogiannis,et al.  Enabling human status awareness in assistive environments based on advanced sound and motion data classification , 2008, PETRA '08.

[23]  Francis Jambon,et al.  Une plateforme usage pour l'intégration de l'informatique ambiante dans l'habitat. L'appartement Domus , 2013, Tech. Sci. Informatiques.

[24]  Michel Vacher,et al.  Development of Audio Sensing Technology for Ambient Assisted Living: Applications and Challenges , 2011, Int. J. E Health Medical Commun..

[25]  V. Bellamy,et al.  Bilan démographique 2012 : la population croît, mais plus modérément , 2013 .

[26]  Gérard Chollet,et al.  Hands-free speech-sound interactions at home , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[27]  François Portet,et al.  Contribution à l'étude de la variabilité de la voix des personnes âgées en reconnaissance automatique de la parole , 2012 .

[28]  Kiyohiro Shikano,et al.  Acoustic models of the elderly for large‐vocabulary continuous speech recognition , 2004 .

[29]  Tom J. Moir,et al.  From science fiction to science fact: A Smart-House interface using speech technology and a photo-realistic avatar , 2008, 2008 15th International Conference on Mechatronics and Machine Vision in Practice.

[30]  Richard M. Stern,et al.  The 1997 CMU Sphinx-3 English Broadcast News Transcription System , 1997 .

[31]  Michel Vacher,et al.  Distant Speech Recognition in a Smart Home: Comparison of Several Multisource ASRs in Realistic Conditions , 2011, INTERSPEECH.

[32]  Michel Vacher,et al.  Speech and Sound Use in a Remote Monitoring System for Health Care , 2006, TSD.

[33]  Jacqueline Laures-Gore,et al.  Acoustic-perceptual correlates of voice quality in elderly men and women. , 2006, Journal of communication disorders.

[34]  Sweeney Rj,et al.  Acoustic and morphologic study of the senescent voice. , 1984 .

[35]  Maxine Eskénazi,et al.  BREF, a large vocabulary spoken corpus for French , 1991, EUROSPEECH.

[36]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[37]  Michel Vacher,et al.  Analyzing the Performance of Automatic Speech Recognition for Ageing Voice: Does it Correlate with Dependency Level? , 2013, SLPAT.

[38]  C L Ludlow,et al.  Aging Effects on Motor Units in the Human Thyroarytenoid Muscle , 2000, The Laryngoscope.

[39]  Francois Bremond,et al.  A Computer system to monitor older adults at home: Preliminary results , 2009 .