Qualitative Representations for Recognition

The success of any object recognition system, whether biological or artificial, lies in using appropriate representation schemes. The schemes should efficiently encode object concepts while being tolerant to appearance variations induced by changes in viewing geometry and illumination. Here, we present a biologically plausible representation scheme wherein objects are encoded as sets of qualitative image measurements. Our emphasis on the use of qualitative measurements renders the representations stable in the presence of sensor noise and significant changes in object appearance. We develop our ideas in the context of the task of face-detection under varying illumination. Our approach uses qualitative photometric measurements to construct a face signature ('ratio-template') that is largely invariant to illumination changes.

[1]  V. Bruce Stability from Variation: The Case of Face Recognition the M.D. Vernon Memorial Lecture , 1994, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[2]  Marco La Cascia,et al.  Fast, reliable head tracking under varying illumination , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[3]  Ronald A. DeVore,et al.  Image compression through wavelet transform coding , 1992, IEEE Trans. Inf. Theory.

[4]  R. Watt A Computational Examination of Image Segmentation and the Initial Stages of Human Vision , 1994, Perception.

[5]  M. Bichsel Strategies of robust object recognition for the automatic identification of human faces , 1991 .

[6]  T. Gevers Robust histogram construction from color invariants , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[7]  Peter J. Burt,et al.  Multiresolution Techniques For Image Representation, Analysis, And 'Smart' Transmission , 1989, Other Conferences.

[8]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Patrick Cavanagh,et al.  What's up in top-down processing? , 1991 .

[10]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[11]  Pamela R. Lipson,et al.  Context and configuration based scene classification , 1996 .

[12]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[13]  Brian V. Funt,et al.  Color Constant Color Indexing , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  R. Galper,et al.  Recognition of faces in photographic negative , 1970 .

[16]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[17]  Thomas S. Huang,et al.  Human face detection in a complex background , 1994, Pattern Recognit..

[18]  James L. Crowley,et al.  Robust face tracking using color , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[19]  David Salesin,et al.  Wavelets for computer graphics: a primer.1 , 1995, IEEE Computer Graphics and Applications.

[20]  Edward H. Adelson,et al.  PYRAMID METHODS IN IMAGE PROCESSING. , 1984 .

[21]  David Beymer,et al.  Face recognition from one example view , 1995, Proceedings of IEEE International Conference on Computer Vision.

[22]  Tomaso A. Poggio,et al.  Trainable pedestrian detection , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[23]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[24]  L. D. Harmon The recognition of faces. , 1973, Scientific American.

[25]  Ian Craw,et al.  Finding Face Features , 1992, ECCV.

[26]  A. Young,et al.  In the Eye of the Beholder: The Science of Face Perception , 1998 .

[27]  W. Eric L. Grimson,et al.  Localizing Overlapping Parts by Searching the Interpretation Tree , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  R. Phillips Why are faces hard to recognize in photographic negative? , 1972 .

[30]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  V. Bruce,et al.  The prototype effect in face recognition: Extension and limits , 1999, Memory & cognition.

[32]  Thomas S. Huang,et al.  Human face detection in a scene , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Venu Govindaraju,et al.  Locating human faces in newspaper photographs , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[34]  I. Ohzawa,et al.  Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. , 1993, Journal of neurophysiology.

[35]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[36]  Venu Govindaraju,et al.  Locating human faces in photographs , 1996, International Journal of Computer Vision.

[37]  Roberto Brunelli,et al.  HyperBF Networks for Real Object Recognition , 1991, IJCAI.

[38]  Sayan Mukherjee,et al.  Feature reduction and hierarchy of classifiers for fast object detection in video images , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[39]  Robert J. Baron,et al.  Mechanisms of Human Facial Recognition , 1981, Int. J. Man Mach. Stud..

[40]  E. J. Stollnitz,et al.  Wavelets for Computer Graphics : A Primer , 1994 .

[41]  D. W. Murray,et al.  Using the orientation of fragmentary 3D edge segments for polyhedral object recognition , 1988, International Journal of Computer Vision.

[42]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[43]  A. Verri,et al.  Computational aspects of motion perception in natural and artificial vision systems. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[45]  Hiroshi Murase,et al.  Parametric Feature Detection , 1996, International Journal of Computer Vision.

[46]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[47]  V Bruce,et al.  The Use of Pigmentation and Shading Information in Recognising the Sex and Identities of Faces , 1994, Perception.

[48]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[49]  H. Martin Hunke,et al.  Locating and Tracking of Human Faces with Neural Networks , 1994 .

[50]  Aparna Lakshmi Ratan,et al.  Learning visual concepts for image classification , 1999 .

[51]  John Krumm,et al.  Object recognition with color cooccurrence histograms , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[52]  Wu Ling,et al.  Example-based Learning for Human Face Detection , 2002 .

[53]  Jake K. Aggarwal,et al.  Combining structure, color and texture for image retrieval: A performance evaluation , 2002, Object recognition supported by user interaction for service robots.

[54]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[55]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  David Beymer,et al.  Face recognition under varying pose , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[57]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[59]  Jie Wei,et al.  Illumination-invariant color object recognition via compressed chromaticity histograms of color-channel-normalized images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[60]  Shree K. Nayar,et al.  Ordinal Measures for Image Correspondence , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Takeo Kanade,et al.  Human Face Detection in Visual Scenes , 1995, NIPS.