Using the Manhattan distance for computing the multiobjective Markov chains problem
暂无分享,去创建一个
[1] Werner C. Rheinboldt,et al. A Program for a Locally-Parametrized Continuation Process. , 1981 .
[2] Werner C. Rheinboldt,et al. Algorithm 596: a program for a locally parameterized , 1983, TOMS.
[3] Michael N. Katehakis,et al. Multiobjective Markov decisions in urban modelling , 1985 .
[4] K. Tanaka,et al. The closest solution to the shadow minimum of a cooperative dynamic game , 1989 .
[5] R. T. Haftka,et al. Tracing the Efficient Curve for Multi-objective Control-Structure Optimization , 1991 .
[6] Layne T. Watson,et al. Multi-Objective Control-Structure Optimization via Homotopy Methods , 1993, SIAM J. Optim..
[7] A. Tikhonov,et al. Numerical Methods for the Solution of Ill-Posed Problems , 1995 .
[8] J. Dennis,et al. NORMAL-BOUNDARY INTERSECTION: AN ALTERNATE METHOD FOR GENERATING PARETO OPTIMAL POINTS IN MULTICRITERIA OPTIMIZATION PROBLEMS , 1996 .
[9] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[10] John E. Dennis,et al. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..
[11] K. Wakuta,et al. Solution procedures for multi-objective markov decision processes , 1998 .
[12] Kalyanmoy Deb,et al. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.
[13] Xin Yao,et al. Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.
[14] Alexander S. Poznyak,et al. Self-Learning Control of Finite Markov Chains , 2000 .
[15] Marco Laumanns,et al. SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .
[16] Jonathan E. Fieldsend,et al. A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .
[17] Sanaz Mostaghim. Multi-objective evolutionary algorithms: data structures, convergence, and diversity , 2004 .
[18] M. Dellnitz,et al. Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .
[19] Srini Narayanan,et al. Learning all optimal policies with multiple criteria , 2008, ICML '08.
[20] Hisao Ishibuchi,et al. Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[21] Lothar Thiele,et al. Quality Assessment of Pareto Set Approximations , 2008, Multiobjective Optimization.
[22] Andrei V. Kelarev,et al. Constructing Stochastic Mixture Policies for Episodic Multiobjective Reinforcement Learning Tasks , 2009, Australasian Conference on Artificial Intelligence.
[23] Víctor Pereyra,et al. Fast computation of equispaced Pareto manifolds and Pareto fronts for multiobjective optimization problems , 2009, Math. Comput. Simul..
[24] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[25] S. Utyuzhnikov,et al. Directed search domain: a method for even generation of the Pareto frontier in multiobjective optimization , 2011 .
[26] Rajeev Kumar,et al. Characterization of graph properties for improved Pareto fronts using heuristics and EA for bi-objective graph coloring problem , 2013, Appl. Soft Comput..
[27] Shimon Whiteson,et al. A Survey of Multi-Objective Sequential Decision-Making , 2013, J. Artif. Intell. Res..
[28] José Castillo,et al. Equispaced Pareto front construction for constrained bi-objective optimization , 2013, Math. Comput. Model..
[29] Alexander S. Poznyak,et al. Simple computing of the customer lifetime value: A fixed local-optimal policy approach , 2014, Journal of Systems Science and Systems Engineering.
[30] Peter J. Fleming,et al. Pareto Front Estimation for Decision Making , 2014, Evolutionary Computation.
[31] Shimon Whiteson,et al. Bounded Approximations for Linear Multi-Objective Planning Under Uncertainty , 2014, ICAPS.
[32] Kalyanmoy Deb,et al. Multi-Objective Evolutionary Algorithms , 2015, Handbook of Computational Intelligence.
[33] Marcello Restelli,et al. Multi-Objective Reinforcement Learning with Continuous Pareto Frontier Approximation , 2014, AAAI.
[34] Alexander S. Poznyak,et al. Computing the Stackelberg/Nash equilibria using the extraproximal method: Convergence analysis and implementation details for Markov chains games , 2015, Int. J. Appl. Math. Comput. Sci..
[35] Julio B. Clempner. Necessary and sufficient Karush-Kuhn-Tucker conditions for multiobjective Markov chains optimality , 2016, Autom..
[36] Alexander S. Poznyak,et al. Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method , 2016, Math. Comput. Simul..