Internal transport barriers: critical physics issues?

Plasmas regimes with improved core energy confinement properties, i.e. with internal transport barriers (ITB), provide a possible route towards simultaneous high fusion performance and continuous tokamak reactor operation in a non-inductive current drive state. High core confinement regimes should be made compatible with a dominant fraction of the plasma current self-generated (pressure-driven) by the bootstrap effect while operating at high normalized pressure and moderate current. Furthermore, ITB regimes with 'non-stiff' plasma core pressure break the link observed in standard inductive operation between fusion performances and plasma pressure at the edge, thus offering a new degree of freedom in the tokamak operational space. Prospects and critical issues for using plasmas with enhanced thermal core insulation as a basis for steady tokamak reactor operation are reviewed in the light of the encouraging experimental and modelling results obtained recently (typically in the last two years). An extensive set of data from experiments carried out worldwide has been gathered on ITB regimes covering a wide range of parameters (q-profile, T i /T e , gradient length, shaping, normalized toroidal Larmor radius, collisionality, Mach number, etc). In the light of the progress made recently, the following critical physics issues relevant to the extrapolation of ITB regimes to next-step experiments, such as ITER, are addressed: (i) conditions for ITB formation and existence of a power threshold, (ii) ITB sustainment at T i ∼ T e , with low toroidal torque injection, low central particle fuelling but at high density and low impurity concentration, (iii) control of confinement for sustaining wide ITBs that encompass a large volume at high β N , (iv) real time profile control (q and pressure) with high bootstrap current and large fraction of alpha-heating and (v) compatibility of core with edge transport barriers or with external core perturbations (such as frozen hydrogen isotope pellets injection). It is shown that the present experimental results provide some valuable and promising answers to these critical issues.

[1]  F. Imbeaux,et al.  Simulations of steady-state scenarios for Tore Supra using the CRONOS code , 2003 .

[2]  C. D. Challis,et al.  Internal transport barrier triggering by rational magnetic flux surfaces in tokamaks , 2003 .

[3]  A Bottino,et al.  Inductive current density perturbations to probe electron internal transport barriers in tokamaks. , 2005, Physical review letters.

[4]  T. L. Rhodes,et al.  Suppression of large edge localized modes with edge resonant magnetic fields in high confinement DIII-D plasmas , 2005 .

[5]  P. T. Bonoli,et al.  Pressure profile modification of internal transport barrier plasmas in Alcator C-Mod , 2003 .

[6]  Hiroshi Shirai,et al.  Characteristics of internal transport barriers in JT-60U reversed shear plasmas , 2001 .

[7]  C. D. Challis,et al.  The use of internal transport barriers in tokamak plasmas , 2004 .

[8]  K. H. Burrell,et al.  Effects of E×B velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices , 1997 .

[9]  D. J. Campbell,et al.  Chapter 1: Overview and summary , 1999 .

[10]  X. Garbet,et al.  JET RF Dominated Scenarios and Ion ITB Experiments with Low External Momentum Input , 2005 .

[11]  G. Taylor,et al.  Roles of Electric Field Shear and Shafranov Shift in Sustaining High Confinement in Enhanced Reversed Shear Plasmas on the TFTR Tokamak , 1997 .

[12]  V. M. Leonov,et al.  Simulation of high-Z impurity behaviour for ITER operational scenarios using the ZIMPUR impurity code , 2005 .

[13]  G. Hammett,et al.  Gyrofluid simulations of turbulence suppression in reversed-shear experiments on the Tokamak Fusion Test Reactor , 1997 .

[14]  Y. Gribov,et al.  Stabilization of resistive wall modes in ITER by active feedback and toroidal rotation , 2004 .

[15]  E. Joffrin,et al.  Real-time control of internal transport barriers in JET , 2002 .

[16]  P. C. de Vries,et al.  Real-time control of the q-profile in JET for steady state advanced tokamak operation , 2003 .

[17]  Toshihiro Suzuki,et al.  Studies of the influence of electron heating on ITB subject to advanced tokamak operation in JT-60U , 2004 .

[18]  H. Zohm,et al.  Confinement physics of the advanced scenario with ELMy H-mode edge in ASDEX Upgrade , 2002 .

[19]  T. S. Taylor,et al.  Physics of advanced tokamaks , 1997 .

[20]  A. Murari,et al.  Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region. , 2005, Physical review letters.

[21]  W. Kerner,et al.  Plasma confinement in JET H?mode plasmas with H, D, DT and T isotopes , 1999 .

[22]  C. Giroud,et al.  Progress towards steady-state operation and real-time control of internal transport barriers in JET , 2003 .

[23]  A fusion reactor: continuous or semi-continuous? , 1993 .

[24]  T. C. Luce,et al.  Development of Steady-State Advanced Tokamak Research in the DIII-D Tokamak , 2005 .

[25]  O. Sauter,et al.  High-bootstrap, noninductively sustained electron internal transport barriers in the Tokamak a Configuration Variable , 2005 .

[26]  F. Imbeaux,et al.  New tokamak plasma regime with stationary temperature oscillations. , 2003, Physical review letters.

[27]  X. Garbet,et al.  Simulations of JET pellet fuelled ITB plasmas , 2005 .

[28]  C. Giroud,et al.  Impurity transport in internal transport barrier discharges on JET , 2004 .

[29]  H Kubo,et al.  Quasisteady high-confinement reversed shear plasma with large bootstrap current fraction under full noninductive current drive condition in JT-60U. , 2001, Physical review letters.

[30]  Y. Gribov,et al.  Performance of ITER as a burning plasma experiment , 2004 .

[31]  J. Weiland,et al.  Physics of transport in tokamaks , 2004 .

[32]  T. Fujita,et al.  Formation conditions for electron internal transport barriers in JT-60U plasmas , 2004 .

[33]  Mitsuru Kikuchi,et al.  Steady state tokamak reactor based on the bootstrap current , 1990 .

[34]  X. Litaudon Profile control for steady-state operation , 1998 .

[35]  J. Kinsey,et al.  The quiescent double barrier regime in the DIII-D tokamak , 2001 .

[36]  J. Weiland,et al.  Fully predictive time-dependent transport simulations of ITB plasmas in JET, JT-60U and DIII-D , 2006 .

[37]  H. Shirai,et al.  Measurement of turbulence decorrelation during transport barrier evolution in a high-temperature fusion plasma. , 2005, Physical review letters.

[38]  Julien Fuchs,et al.  Impurity behaviour in the ASDEX Upgrade divertor tokamak with large area tungsten walls , 2002 .

[39]  T. Fujita,et al.  Properties of internal transport barrier formation in JT-60U , 2004 .

[40]  R. D. Stambaugh,et al.  Optimum equilibria for high performance, steady state tokamaks , 2004 .

[41]  L. L. Lao,et al.  Edge localized mode physics and operational aspects in tokamaks , 2003 .

[42]  O. Naito,et al.  Steady State High N Discharges and Real-Time Control of Current Profile in JT-60U , 2004 .

[43]  N. Kirneva,et al.  Internal transport barrier formation in experiments with reverse magnetic shear in T-10 tokamak , 2005 .

[44]  N. J. Lopes Cardozo,et al.  A model for electron transport barriers in tokamaks, tested against experimental data from RTP , 1998 .

[45]  C. Giroud,et al.  ERRATUM: Influence of the q-profile shape on plasma performance in JET , 2002 .

[46]  C. Kessel,et al.  Control of plasma profiles in DIII-D discharges , 2006 .

[47]  Jet Efda Contributors,et al.  Tritium transport experiments on the JET tokamak , 2004 .

[48]  Jet Efda Contributors,et al.  Development on JET of Advanced Tokamak Operations for ITER , 2006 .

[49]  Alfredo Pironti,et al.  A model-based technique for integrated real-time profile control in the JET tokamak , 2004 .

[50]  J. Manickam,et al.  Disappearance of giant ELMs and appearance of minute grassy ELMs in JT-60U high-triangularity discharges , 2000 .

[51]  W. Treutterer,et al.  Type II ELMy H modes on ASDEX Upgrade with good confinement at high density , 2001 .

[52]  Tsuji,et al.  Internal transport barrier on q=3 surface and poloidal plasma spin up in JT-60U high- beta p discharges. , 1994, Physical review letters.

[53]  Participant Teams,et al.  ITER: burning plasma physics experiment , 2003 .

[54]  O. Naito,et al.  Role of radial electric field and plasma rotation in the time evolution of internal transport barrier in JT-60U , 2000 .

[55]  F. Imbeaux,et al.  Giant oscillations of electron temperature during steady-state operation on Tore Supra. , 2006, Physical review letters.

[56]  Jukka Heikkinen,et al.  ITB formation in terms of ωE×B flow shear and magnetic shear s on JET , 2001 .

[57]  C. Giroud,et al.  The beta scaling of energy confinement in ELMy H-modes in JET , 2004 .

[58]  T. Fujita,et al.  Impact of the edge pedestal characteristics on the integrated performance in advanced tokamak operation modes in JT-60U , 2006 .

[59]  Hiroshi Shirai,et al.  Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier , 2003 .

[60]  J. Kinsey,et al.  Dynamic modeling of stepwise internal transport barrier formation in DIII-D negative-central-shear discharges. , 2001, Physical review letters.

[61]  M. Takechi,et al.  Stationary high confinement plasmas with large bootstrap current fraction in JT-60U , 2005 .

[62]  C. D. Challis,et al.  Predictive modelling of JET optimized shear discharges , 1999 .

[63]  S. E. Lysenko,et al.  Reduced core transport in T-10 and TEXTOR discharges at rational surfaces with low magnetic shear , 2004 .

[64]  Kikuchi Mitsuru,et al.  Advanced tokamak research on JT-60 , 2005 .

[65]  J. Weiland,et al.  Collective modes in inhomogeneous plasma : Kinetic and advanced fluid theory , 2000 .

[66]  C. Bourdelle,et al.  Effect of hysteresis in JET ITB plasma with LHCD , 2005 .

[67]  X. Litaudon,et al.  Electron heated internal transport barriers in JET , 2002 .

[68]  Discharges in the JET tokamak where the safety factor profile is identified as the critical factor for triggering internal transport barriers. , 2002, Physical review letters.

[69]  A. Loarte,et al.  Characterization of small ELM experiments in highly shaped single null and quasi-double-null plasmas in JET , 2005 .

[70]  F. Imbeaux,et al.  q-profile evolution and improved core electron confinement in the full current drive operation on Tore Supra , 2001 .

[71]  A. Polevoi,et al.  1 CT / P-08 Possibility of Q > 5 Stable , Steady-State Operation in ITER with Moderate β N and H-factor , 2002 .

[72]  J. Rice,et al.  Internal Transport Barrier Production and Control in Alcator C-Mod , 2004 .

[73]  J. Contributors,et al.  Helium exhaust experiments on JET with Type I ELMs in H-mode and with Type III ELMs in ITB discharges , 2005 .

[74]  X. Litaudon,et al.  INCREASED UNDERSTANDING OF THE DYNAMICS AND TRANSPORT IN ITB PLASMAS FROM MULTI-MACHINE COMPARISONS , 2002 .

[75]  U. California,et al.  Theory of the spatiotemporal dynamics of transport bifurcations , 1996, plasm-ph/9609001.

[76]  P. Gohil,et al.  Dynamics of the formation, sustainment and destruction of transport barriers in magnetically contained fusion plasmas* , 2002 .

[77]  F. Imbeaux,et al.  Progress in LHCD: a tool for advanced regimes on ITER , 2005 .

[78]  T. Fujita,et al.  Study of Advanced Tokamak Performance Using the International Tokamak Physics Activity Database , 2005 .

[79]  E. Joffrin,et al.  Edge issues in ITB plasmas in JET , 2002 .

[80]  J. Kinsey,et al.  Progress towards increased understanding and control of internal transport barriers in DIII-D , 2002 .

[81]  X. Garbet,et al.  Characterization of ion heat conduction in JET and ASDEX Upgrade plasmas with and without internal transport barriers , 2003 .

[82]  Jeff M. Candy,et al.  Smoothness of turbulent transport across a minimum-q surface , 2004 .

[83]  T. Fujita,et al.  Role of low order rational q-values in the ITB events in JT-60U reverse shear plasmas , 2004 .

[84]  Advances in the physics of steady-state plasmas by long pulse experiments on Tore Supra , 2005 .

[85]  Y. Peysson High power lower hybrid current drive experiments in the Tore Supra tokamak , 2001 .

[86]  X. Litaudon,et al.  Predictive transport simulations of real-time profile control in JET advanced tokamak plasmas , 2005 .

[87]  Taina Kurki-Suonio,et al.  Formation and detection of internal transport barriers in low-current tokamaks , 2002 .

[88]  C. Gormezano,et al.  A review of internal transport barrier physics for steady-state operation of tokamaks , 2004 .

[89]  E. Joffrin,et al.  Status of and prospects for advanced tokamak regimes from multi-machine comparisons using the 'International Tokamak Physics Activity' database , 2004 .

[90]  X. Garbet,et al.  On the link between the q-profile and internal transport barriers , 2004 .

[91]  Gunter,et al.  Simultaneous attainment of high electron and ion temperatures in discharges with internal transport barriers in ASDEX upgrade , 2000, Physical review letters.

[92]  X. Litaudon,et al.  A dimensionless criterion for characterizing internal transport barriers in JET , 2002 .

[93]  O. Sauter,et al.  Rapid and localized electron internal-transport-barrier formation during shear inversion in fully noninductive TCV discharges. , 2004, Physical review letters.

[94]  Basiuk,et al.  Internal transport barrier with ion-cyclotron-resonance minority heating on tore supra , 2000, Physical review letters.

[95]  J. B. Lister,et al.  Integrated exhaust scenarios with actively controlled ELMs , 2005 .

[96]  C. Gormezano,et al.  High performance tokamak operation regimes , 1999 .

[97]  C. Bourdelle,et al.  Global simulations of ion turbulence with magnetic shear reversal , 2001 .

[98]  Jay Kesner,et al.  Dipole equilibrium and stability , 2001 .

[99]  R. Aymar,et al.  The ITER design , 2002 .

[100]  Frank Jenko,et al.  Critical gradient formula for toroidal electron temperature gradient modes , 2001 .

[101]  Physics of strong internal transport barriers in JT-60U reversed-magnetic-shear plasmas , 2006 .

[102]  Probing internal transport barriers with heat pulses in JET. , 2006, Physical review letters.

[103]  T. Fujita,et al.  Response of toroidal rotation velocity to electron cyclotron wave injection in JT-60U , 2006 .

[104]  X. Litaudon,et al.  Impact of the α parameter on the microstability of internal transport barriers , 2005 .

[105]  O. Naito,et al.  ITER L mode confinement database , 1997 .

[106]  Jeff M. Candy,et al.  Beta scaling of transport on the DIII-D Tokamak: Is transport electrostatic or electromagnetic? , 2004 .

[107]  A. D. Turnbull,et al.  Stationary, high bootstrap fraction plasmas in DIII-D without inductive current control , 2005 .

[108]  O. Naito,et al.  Fusion Plasma Performance and Confinement Studies on JT-60 and JT-60U , 2002 .

[109]  J. Weiland,et al.  Density and temperature profile modifications with electron cyclotron power injection in quiescent double barrier discharges on DIII-D , 2005 .

[110]  F. Crisanti,et al.  High density internal transport barriers for burning plasma operation , 2005 .

[111]  R. C. Wolf,et al.  Internal transport barriers in tokamak plasmas , 2003 .