Characterisations and examples of graph classes with bounded expansion

Classes with bounded expansion, which generalise classes that exclude a topological minor, have recently been introduced by Nesetril and Ossona de Mendez. These classes are defined by the fact that the maximum average degree of a shallow minor of a graph in the class is bounded by a function of the depth of the shallow minor. Several linear-time algorithms are known for bounded expansion classes (such as subgraph isomorphism testing), and they allow restricted homomorphism dualities, amongst other desirable properties. In this paper, we establish two new characterisations of bounded expansion classes, one in terms of so-called topological parameters and the other in terms of controlling dense parts. The latter characterisation is then used to show that the notion of bounded expansion is compatible with the Erdos-Renyi model of random graphs with constant average degree. In particular, we prove that for every fixed d>0, there exists a class with bounded expansion, such that a random graph of order n and edge probability d/n asymptotically almost surely belongs to the class. We then present several new examples of classes with bounded expansion that do not exclude some topological minor, and appear naturally in the context of graph drawing or graph colouring. In particular, we prove that the following classes have bounded expansion: graphs that can be drawn in the plane with a bounded number of crossings per edge, graphs with bounded stack number, graphs with bounded queue number, and graphs with bounded non-repetitive chromatic number. We also prove that graphs with 'linear' crossing number are contained in a topologically-closed class, while graphs with bounded crossing number are contained in a minor-closed class.

[1]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[2]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[3]  Mihalis Yannakais,et al.  Embedding planar graphs in four pages , 1989, STOC 1989.

[4]  Noga Alon,et al.  Breaking the rhythm on graphs , 2008, Discret. Math..

[5]  Hikoe Enomoto,et al.  Lower Bounds for the Number of Edge-crossings Over the Spine in a Topological Book Embedding of a Graph , 1999, Discret. Appl. Math..

[6]  David Eppstein,et al.  Separating Thickness from Geometric Thickness , 2002, GD.

[7]  Zdenek Dvorak,et al.  On forbidden subdivision characterizations of graph classes , 2008, Eur. J. Comb..

[8]  Maxime Crochemore,et al.  Finding Patterns In Given Intervals , 2007, Fundam. Informaticae.

[9]  Jaroslav Nesetril,et al.  The Grad of a Graph and Classes with Bounded Expansion , 2005, Electron. Notes Discret. Math..

[10]  Sandi Klavzar,et al.  Nonrepetitive colorings of trees , 2007, Discret. Math..

[11]  Lenwood S. Heath,et al.  Laying out Graphs Using Queues , 1992, SIAM J. Comput..

[12]  M. Aigner,et al.  Proofs from "The Book" , 2001 .

[13]  Dániel Marx,et al.  The complexity of nonrepetitive coloring , 2009, Discret. Appl. Math..

[14]  Jj Anos Pach Which Crossing Number Is It Anyway? , 1998 .

[15]  Jaroslav Nesetril,et al.  On nowhere dense graphs , 2011, Eur. J. Comb..

[16]  André Raspaud,et al.  Colored Homomorphisms of Colored Mixed Graphs , 2000, J. Comb. Theory, Ser. B.

[17]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion II. Algorithmic aspects , 2008, Eur. J. Comb..

[18]  Sandi Klavzar,et al.  Square-free colorings of graphs , 2004, Ars Comb..

[19]  Xuding Zhu,et al.  Colouring graphs with bounded generalized colouring number , 2009, Discret. Math..

[20]  Benny Sudakov,et al.  Two remarks on the Burr-Erdos conjecture , 2009, Eur. J. Comb..

[21]  Paul C. Kainen,et al.  The book thickness of a graph , 1979, J. Comb. Theory, Ser. B.

[22]  Z. Dvořák,et al.  Asymptotical Structure of Combinatorial Objects , 2007 .

[23]  André Raspaud,et al.  Star coloring of graphs , 2004 .

[24]  Noga Alon,et al.  Nonrepetitive colorings of graphs , 2002, Random Struct. Algorithms.

[25]  Lenwood S. Heath,et al.  Stack and Queue Layouts of Posets , 1997, SIAM J. Discret. Math..

[26]  David R. Wood,et al.  Notes on Nonrepetitive Graph Colouring , 2008, Electron. J. Comb..

[27]  David R. Wood,et al.  Acyclic, Star and Oriented Colourings of Graph Subdivisions , 2005, Discret. Math. Theor. Comput. Sci..

[28]  A. Sz ekely A successful concept for measuring non-planarity of graphs: the crossing number , 2007 .

[29]  Ravi Kannan,et al.  Unraveling k-page graphs , 1985, Inf. Control..

[30]  David R. Wood,et al.  Clique Minors in Cartesian Products of Graphs , 2007, ArXiv.

[31]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[32]  Bogdan Oporowski,et al.  Drawing Subdivisions Of Complete And Complete Bipartite Graphs On Books , 1999 .

[33]  Mihalis Yannakakis,et al.  Embedding Planar Graphs in Four Pages , 1989, J. Comput. Syst. Sci..

[34]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[35]  N. Alon,et al.  Homomorphisms of Edge-Colored Graphs and Coxeter Groups , 1998 .

[36]  David R. Wood,et al.  Stacks, Queues and Tracks: Layouts of Graph Subdivisions , 2005, Discret. Math. Theor. Comput. Sci..

[37]  Bruce A. Reed,et al.  Excluding any graph as a minor allows a low tree-width 2-coloring , 2004, J. Comb. Theory, Ser. B.

[38]  Max BLOUIN,et al.  CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE , 2009 .

[39]  Jaroslav Nesetril,et al.  Linear time low tree-width partitions and algorithmic consequences , 2006, STOC '06.

[40]  Endre Szemerédi,et al.  On Nontrivial Separators for k-Page Graphs and Simulations by Nondeterministic One-Tape Turing Machines , 1989, J. Comput. Syst. Sci..

[41]  B. Bollobás The evolution of random graphs , 1984 .

[42]  Martin Grötschel,et al.  Building bridges : between mathematics and computer science , 2008 .

[43]  Endre Szemerédi,et al.  On nontrivial separators for k-page graphs and simulations by nondeterministic one-tape Turing machines , 1986, STOC '86.

[44]  J. Nesetril,et al.  From Sparse Graphs to Nowhere Dense Structures: Decompositions, Independence, Dualities and Limits , 2010 .

[45]  B. Pittel,et al.  The structure of a random graph at the point of the phase transition , 1994 .

[46]  Arnold L. Rosenberg,et al.  Comparing Queues and Stacks as Mechanisms for Laying out Graphs , 1992, SIAM J. Discret. Math..

[47]  J. Nesetril,et al.  Structural Properties of Sparse Graphs , 2008, Electron. Notes Discret. Math..

[48]  Jaroslav Nesetril,et al.  How many F's are there in G? , 2011, Eur. J. Comb..

[49]  J. Nesetril,et al.  Grad and classes with bounded expansion III. restricted dualities , 2005, math/0508325.

[50]  James D. Currie,et al.  Pattern avoidance: themes and variations , 2005, Theor. Comput. Sci..

[51]  Glenn G. Chappell,et al.  Coloring with no 2-Colored P4's , 2004, Electron. J. Comb..

[52]  Jaroslaw Grytczuk,et al.  Nonrepetitive Colorings of Graphs - A Survey , 2007, Int. J. Math. Math. Sci..

[53]  J. Barát,et al.  ON SQUARE-FREE VERTEX COLORINGS OF GRAPHS , 2007 .

[54]  Hikoe Enomoto,et al.  Embedding Graphs into a Three Page Book with O(m log n) Crossings of Edges over the Spine , 1999, SIAM J. Discret. Math..

[55]  David R. Wood,et al.  Track Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..

[56]  Satish Rao,et al.  Shallow excluded minors and improved graph decompositions , 1994, SODA '94.

[57]  Daniela Kühn,et al.  The order of the largest complete minor in a random graph , 2007, Random Struct. Algorithms.

[58]  Bruce A. Reed,et al.  Star coloring of graphs , 2004, J. Graph Theory.

[59]  Gnter Hotz,et al.  Ein Satz über Mittellinien , 1959 .

[60]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[61]  Jaroslav Nesetril,et al.  First order properties on nowhere dense structures , 2010, The Journal of Symbolic Logic.

[62]  R. Blankenship Book embeddings of graphs , 2003 .

[63]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[64]  Huang Yuan-qiu The crossing number of K_5\e×S_n , 2011 .

[65]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion III. Restricted graph homomorphism dualities , 2008, Eur. J. Comb..

[66]  Pat Morin,et al.  Layout of Graphs with Bounded Tree-Width , 2004, SIAM J. Comput..

[67]  André Kündgen,et al.  Nonrepetitive colorings of graphs of bounded tree-width , 2008, Discret. Math..

[68]  Anuj Dawar,et al.  Finite Model Theory on Tame Classes of Structures , 2007, MFCS.

[69]  Z. Dvořák On Forbidden Subdivision Characterization of Graph Classes , .

[70]  Endre Szemerédi,et al.  On 3-pushdown graphs with large separators , 1989, Comb..

[71]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[72]  Jaroslaw Grytczuk,et al.  Thue type problems for graphs, points, and numbers , 2008, Discret. Math..

[73]  G. Hotz,et al.  Arkadenfadendarstellung von Knoten und eine neue Darstellung der Knotengruppe , 1960 .

[74]  Sriram Venkata Pemmarju Exploring the powers of stacks and queues via graph layouts , 1992 .

[75]  David R. Wood,et al.  On Linear Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..

[76]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[77]  Jaroslaw Grytczuk,et al.  Pattern avoidance on graphs , 2007, Discret. Math..

[78]  Daniel J. Kleitman,et al.  The crossing number of K5,n , 1970 .

[79]  F. Thomas Leighton,et al.  Complexity Issues in VLSI , 1983 .

[80]  Andrzej Pezarski,et al.  Non-Repetitive 3-Coloring of Subdivided Graphs , 2009, Electron. J. Comb..

[81]  Fedor Manin,et al.  The complexity of nonrepetitive edge coloring of graphs , 2007, ArXiv.

[82]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[83]  Hikoe Enomoto,et al.  Embedding a graph into a d + 1-page book with [m log_d n] edge-crossings over the spine , 1996 .

[84]  Miki Miyauchi,et al.  Embedding a Graph into a d + 1-page Book with [m logdn] Edge-crossings over the Spine , 2005, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[85]  János Barát,et al.  On square-free edge colorings of graphs , 2008, Ars Comb..

[86]  Bojan Mohar,et al.  The Minor Crossing Number , 2006, SIAM J. Discret. Math..