Thermal Management in Long-Wavelength Flip-Chip Semiconductor Disk Lasers

We address the thermal management of flip-chip semiconductor disk lasers (SDLs) emitting at wavelengths 1.3-1.6 μm. The emphasis of the study is on fabricating thin SDL structures with high thermal conductance. An essential part of this task is to use GaAs-based materials in the distributed Bragg reflector (DBR), because they can provide a combination of high thermal conductivity and high refractive index contrast. Furthermore, the reflectivity of the GaAs-based DBR should preferably be enhanced using a thin dielectric layer and a highly reflecting metal layer. Such a configuration enables very thin mirror structures with a reduced number of DBR layer pairs without compromising the reflectivity. The concept is demonstrated experimentally with a 1.32-μm flip-chip SDL, where the GaAs-based DBR is finished with a thin Al2O3 layer and a highly reflective Al layer. In addition, the design principles, thermal management, and the development issues related to semiconductor-dielectric-metal mirrors in 1.3-1.6-μm flip-chip SDLs are discussed.

[1]  K. Kohler,et al.  GaSb-Based Optically Pumped Semiconductor Disk Laser Using Multiple Gain Elements , 2009, IEEE Photonics Technology Letters.

[2]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[3]  Andreas Dr. Plößl,et al.  GaAs wafer bonding by atomic hydrogen surface cleaning , 1999 .

[4]  U. Gösele,et al.  Wafer bonding of different III–V compound semiconductors by atomic hydrogen surface cleaning , 2001 .

[5]  I. Radu (Invited) In Memoriam Ulrich Gösele: Wafer Bonding à la Carte , 2010 .

[6]  I. Sagnes,et al.  Thermal Management for High-Power Single-Frequency Tunable Diode-Pumped VECSEL Emitting in the Near- and Mid-IR , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  G. Zydzik,et al.  Strong adhesion of vacuum‐evaporated gold to oxide or glass substrates , 1977 .

[8]  Taisuke Miura,et al.  Low-loss broadband semiconductor saturable absorber mirror for mode-locked Ti:sapphire lasers , 2000 .

[9]  Avi Zadok,et al.  Self-assembled monolayer assisted bonding of Si and InP , 2012 .

[10]  A. Mereuta,et al.  High performance wafer-fused semiconductor disk lasers emitting in the 1300 nm waveband. , 2014, Optics express.

[11]  W. Oldham,et al.  Reliability of copper metallization on silicon-dioxide , 1991, 1991 Proceedings Eighth International IEEE VLSI Multilevel Interconnection Conference.

[12]  N. Mermilliod,et al.  Performance of various diode-pumped Nd:laser materials: influence of inhomogeneous broadening , 1992 .

[13]  M. D. Dawson,et al.  Multiwatt, Continuous-Wave, Tunable Diamond Raman Laser With Intracavity Frequency-Doubling to the Visible Region , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Masayuki Ishikawa,et al.  144 °C operation of 1.3 μm InGaAsP vertical cavity lasers on GaAs substrates , 1992 .

[15]  Jorg Hader,et al.  106 W continuous-wave output power from vertical-external-cavity surface-emitting laser , 2012 .

[16]  Michael Wraback,et al.  In-well pumping of InGaN/GaN vertical-external-cavity surface-emitting lasers , 2011 .

[17]  Henryk Temkin,et al.  Vertical-cavity surface-emitting lasers : design, fabrication, characterization, and applications , 2001 .

[18]  Y. Fainman,et al.  Amorphous Al2O3 Shield for Thermal Management in Electrically Pumped Metallo-Dielectric Nanolasers , 2014, IEEE Journal of Quantum Electronics.

[19]  James R. Lloyd,et al.  Copper metallization reliability , 1999 .

[20]  J. J. Dudley,et al.  Optically pumped all-epitaxial wafer-fused 1.52 µm vertical-cavity lasers , 1994 .

[21]  David B. Janes,et al.  Gold surface with sub-nm roughness realized by evaporation on a molecular adhesion monolayer , 2006 .

[22]  Christian Kannengiesser,et al.  Ten years optically pumped semiconductor lasers: review, state-of-the-art, and future developments , 2010, LASE.

[23]  D. J. Twitchen,et al.  Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition , 2009 .

[24]  Soohaeng Cho,et al.  Enhancement of Pumping Efficiency in a Vertical-External-Cavity Surface-Emitting Laser , 2007, IEEE Photonics Technology Letters.

[25]  Tomi Leinonen,et al.  Recent advances in the development of yellow-orange GaInNAs-based semiconductor disk lasers , 2012, Other Conferences.

[26]  Shawn Hackett,et al.  High Power Optically Pumped Semiconductor Lasers for Sodium Guidestar Applications , 2016 .

[27]  B. Kunert,et al.  VECSEL Optimization Using Microscopic Many-Body Physics , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[28]  A. Mereuta,et al.  High-power flip-chip semiconductor disk laser in the 1.3 μm wavelength band. , 2014, Optics letters.

[29]  S. L. Vetter,et al.  Thermal Management of Near-Infrared Semiconductor Disk Lasers With AlGaAs Mirrors and Lattice (Mis)Matched Active Regions , 2012, IEEE Journal of Quantum Electronics.

[30]  O. Okhotnikov,et al.  Multi-Watt Semiconductor Disk Laser by Low Temperature Wafer Bonding , 2013, IEEE Photonics Technology Letters.

[31]  Vladislav V Verkhusha,et al.  Red fluorescent proteins: advanced imaging applications and future design. , 2012, Angewandte Chemie.

[32]  James S. Harris,et al.  A Wet Etching Technique for Accurate Etching of GaAs / AlAs Distributed Bragg Reflectors , 1995 .

[33]  Reduction of thermal conductivity in wafer-bonded silicon , 2008 .

[34]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[35]  Arthur H. Guenther,et al.  The role of thermal conductivity in the pulsed laser damage sensitivity of optical thin films , 1988 .

[36]  Stephen J. Sweeney,et al.  The temperature dependence of 1.3- and 1.5-/spl mu/m compressively strained InGaAs(P) MQW semiconductor lasers , 1999 .

[37]  Tomi Leinonen,et al.  1180 nm VECSEL with output power beyond 20 W , 2013 .

[38]  Di Liang,et al.  Low-Temperature, Strong SiO2-SiO2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits , 2008 .

[39]  M. Rattunde,et al.  Thermal Management in 2.3- $\mu{\hbox {m}}$ Semiconductor Disk Lasers: A Finite Element Analysis , 2008, IEEE Journal of Quantum Electronics.

[40]  Soohaeng Cho,et al.  Effect of the properties of an intracavity heat spreader on second harmonic generation in vertical-external-cavity surface-emitting laser , 2007 .

[41]  Antti Rantamäki,et al.  High power semiconductor disk laser with a semiconductor-dielectric-metal compound mirror , 2014 .

[42]  Matthias Schulze,et al.  Optically pumped semiconductor lasers expand the scope of potential applications , 2006 .

[43]  Jorg Hader,et al.  On the measurement of the thermal impedance in vertical-external-cavity surface-emitting lasers , 2013 .

[44]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[45]  J. Bengtsson,et al.  Thermal management of optically pumped long-wavelength InP-based semiconductor disk lasers , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[46]  O. Okhotnikov,et al.  Nonlinear fibre-optic devices pumped by semiconductor disk lasers , 2012 .

[47]  J. Muszalski,et al.  The reduction of the misfit dislocation in non-doped AlAs/GaAs DBRs , 2009 .

[48]  Martin D. Dawson,et al.  Semiconductor disk lasers for the generation of visible and ultraviolet radiation , 2009 .

[49]  Hans Zogg,et al.  Optically pumped 5 μm IV-VI VECSEL with Al-heat spreader , 2008 .

[50]  Juan L. A. Chilla,et al.  High-power optically pumped semiconductor lasers , 2004, SPIE LASE.

[51]  Rajendra Singh,et al.  Wafer Direct Bonding: From Advanced Substrate Engineering to Future Applications in Micro/Nanoelectronics , 2006, Proceedings of the IEEE.

[52]  Fan Zhang,et al.  On the Measurement of the Thermal Resistance of Vertical-External-Cavity Surface-Emitting Lasers (VECSELs) , 2012, IEEE Journal of Quantum Electronics.

[53]  E Kapon,et al.  High-Power 1.48-$\mu$m Wafer-Fused Optically Pumped Semiconductor Disk Laser , 2011, IEEE Photonics Technology Letters.

[54]  Alexei Sirbu,et al.  3 W of 650 nm red emission by frequency doubling of wafer-fused semiconductor disk laser. , 2010, Optics express.

[55]  J. Bowers,et al.  Long-wavelength vertical-cavity lasers and amplifiers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[56]  Emmi Kantola,et al.  High-efficiency 20 W yellow VECSEL. , 2014, Optics express.

[57]  I. Sagnes,et al.  Experimental Investigation and Analytical Modeling of Excess Intensity Noise in Semiconductor Class-A Lasers , 2008, Journal of Lightwave Technology.

[58]  Alexei Sirbu,et al.  1 W at 785 nm from a frequency-doubled wafer-fused semiconductor disk laser. , 2012, Optics express.

[59]  T. Sugaya,et al.  Broadband semiconductor saturable-absorber mirror for a self-starting mode-locked Cr:forsterite laser. , 1998, Optics letters.