Quadratic double-ratio minimax optimization

Abstract The quadratic double-ratio minimax optimization (QRM) admits a generalized linear conic fractional reformulation. It leads to two algorithms to globally solve (QRM) from the primal and dual sides, respectively. The hidden convexity of (QRM) remains unknown except for the special case when both denominators are equal.

[1]  Mehdi Ghatee,et al.  Minimizing the sum of a linear and a linear fractional function applying conic quadratic representation: continuous and discrete problems , 2016 .

[2]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[3]  Amir Beck,et al.  On the Solution of the Tikhonov Regularization of the Total Least Squares Problem , 2006, SIAM J. Optim..

[4]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[5]  Luca Consolini,et al.  Efficient local search procedures for quadratic fractional programming problems , 2020, Comput. Optim. Appl..

[6]  Marc Teboulle,et al.  Finding a Global Optimal Solution for a Quadratically Constrained Fractional Quadratic Problem with Applications to the Regularized Total Least Squares , 2006, SIAM J. Matrix Anal. Appl..

[7]  Marc Teboulle,et al.  A convex optimization approach for minimizing the ratio of indefinite quadratic functions over an ellipsoid , 2009, Math. Program..

[8]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[9]  Jacques A. Ferland,et al.  A note on an algorithm for generalized fractional programs , 1986 .

[10]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[11]  Rosemary A. Renaut,et al.  Efficient Algorithms for Solution of Regularized Total Least Squares , 2005, SIAM J. Matrix Anal. Appl..

[12]  J. J. Moré Generalizations of the trust region problem , 1993 .

[13]  Jacob Flachs,et al.  Generalized Cheney-Loeb-Dinkelbach-Type Algorithms , 1985, Math. Oper. Res..

[14]  Werner Dinkelbach On Nonlinear Fractional Programming , 1967 .

[15]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[16]  S. Schaible,et al.  An algorithm for generalized fractional programs , 1985 .

[17]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..