Design of ideal circular bending actuators for high performance micropumps

This paper presents an investigation of ideal geometry and material parameters of piezo-driven axisymmetric unimorph actuators for micropump applications. Based on Classic Laminated Plate Theory, closed form expressions for the transverse and radial displacement under diverse loads are derived for two types of unimorph actuators. The general approach allows an application of this theory to almost arbitrary actuator geometries. Using analytical and numerical methods, both actuators are optimized to achieve maximum stroke volume at predefined pressure conditions. In this process, strikingly simple expressions are found, constituting the theoretical maximum stroke volume of a circular bender type actuator. The optimization is complemented by a non-linear FEM study that confines the scope of the the analytical results. In summary, the optimization procedure presented in this paper facilitates the design of piezoelectrically driven unimorph diaphragm actuators by providing generic design rules regarding materials and geometrical dimensions.

[1]  S. Franssila Introduction to microfabrication , 2004 .

[2]  J. Reddy Theory and Analysis of Elastic Plates and Shells , 2006 .

[3]  J. G. Smits,et al.  The constituent equations of piezoelectric bimorphs , 1989, Proceedings., IEEE Ultrasonics Symposium,.

[4]  Louis N. Cattafesta,et al.  Analysis of a Composite Piezoelectric Circular Plate With Initial Stresses for MEMS , 2002 .

[5]  Stewart McWilliam,et al.  Analysis of the deflection of a circular plate with an annular piezoelectric actuator , 2007 .

[6]  Laxman Saggere,et al.  An analytical model and working equations for static deflections of a circular multi-layered diaphragm-type piezoelectric actuator , 2007 .

[7]  Peter Woias,et al.  Micropumps—past, progress and future prospects , 2005 .

[8]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[9]  W. Schatt Einführung in die werkstoffwissenschaft , 1982 .

[10]  Wolfram Wersing,et al.  Piezoelectricity: Evolution and Future of a Technology , 2008 .

[11]  Rika M. Wright,et al.  The Effect of Electrode Pattern on the Behavior of Piezoelectric Actuators in a Circular Diaphragm Structure , 2007 .

[12]  Shaochen Chen,et al.  Analytical analysis of a circular PZT actuator for valveless micropumps , 2003 .

[13]  S. N. Prasad,et al.  TWO-PORT ELECTROACOUSTIC MODEL OF A PIEZOELECTRIC COMPOSITE CIRCULAR PLATE , 2002 .

[14]  Mark Sheplak,et al.  Optimization of clamped circular piezoelectric composite actuators , 2008 .

[15]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[16]  M. Kamlah,et al.  Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .

[17]  X. Zha,et al.  Modeling and Numerical Analysis of a Circular Piezoelectric Actuator for Valveless Micropumps , 2008 .

[18]  C. T. Sun,et al.  Analysis of piezoelectric coupled circular plate , 2001 .

[19]  Christopher J. Morris,et al.  Optimization of a circular piezoelectric bimorph for a micropump driver , 2000 .

[20]  S. Dong,et al.  Analytical solutions for the transverse deflection of a piezoelectric circular axisymmetric unimorph actuator , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.