Hypersonic heat transfer and anisotropic visualization with a higher order discontinuous Galerkin finite element method

Higher Order Discontinuous Galerkin Finite Element Method by Douglas J. Quattrochi B.S., Massachusetts Institute of Technology (2004) Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2006 c © Massachusetts Institute of Technology 2006. All rights reserved.

[1]  J. Remacle,et al.  Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws , 2004 .

[2]  David Anthony Venditti,et al.  Grid adaptation for functional outputs of compressible flow simulations , 2000 .

[3]  Miloslav Feistauer,et al.  On some aspects of the discontinuous Galerkin finite element method for conservation laws , 2003, Math. Comput. Simul..

[4]  Mark H. Carpenter,et al.  Computational Considerations for the Simulation of Shock-Induced Sound , 1998, SIAM J. Sci. Comput..

[5]  Edward N. Tinoco,et al.  Data Summary from Second AIAA Computational Fluid Dynamics Drag Prediction Workshop , 2003 .

[6]  Bernd Hamann,et al.  Approximation and visualization of scientific data using higher-order elements , 2003 .

[7]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[8]  Robert Haimes,et al.  Visual3 - Interactive unsteady unstructured 3D visualization , 1991 .

[9]  H. Gouraud Continuous Shading of Curved Surfaces , 1971, IEEE Transactions on Computers.

[10]  Pierre Sagaut,et al.  A problem-independent limiter for high-order Runge—Kutta discontinuous Galerkin methods , 2001 .

[11]  F. Bassi,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2 D Euler Equations , 1998 .

[12]  J. Casper,et al.  Computational Considerations for the Simulation of Discontinuous Flows , 1998 .

[13]  Z. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids , 2002 .

[14]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method II: Two dimensional case , 2005 .

[15]  A. Roshko,et al.  Elements of Gas Dynamics , 1957 .

[16]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[17]  Robert Haimes,et al.  Visualization in computational fluid dynamics: a case study , 1991, Proceeding Visualization '91.

[18]  Thomas H. Pulliam,et al.  Comparison of Several Spatial Discretizations for the Navier-Stokes Equations , 1999 .

[19]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[20]  Todd A. Oliver Multigrid Solution for High-Order Discontinuous Galerkin Discretizations of the Compressible Navier-Stokes Equations , 2004 .

[21]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[22]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[23]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[24]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .

[25]  Peter A. Gnoffo,et al.  Computational Fluid Dynamics Technology for Hypersonic Applications , 2003 .

[26]  John C. Vassberg,et al.  Grid Generation Requirements for Accurate Drag Predictions Based on OVERFLOW Calculations , 2003 .

[27]  M. Carpenter,et al.  On accuracy of adaptive grid methods for captured shocks , 2002 .

[28]  James M. Grimwood,et al.  This New Ocean: A History of Project Mercury , 1966 .

[29]  David L. Darmofal,et al.  DEVELOPMENT OF A HIGHER-ORDER SOLVER FOR AERODYNAMIC APPLICATIONS , 2004 .

[30]  Edward N. Tinoco,et al.  Summary of Data from the Second AIAA CFD Drag Prediction Workshop (Invited) , 2004 .

[31]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[32]  R. LeVeque Numerical methods for conservation laws , 1990 .

[33]  ISOD: an anisotropic isovalue-oriented diffusion artificial viscosity for the Euler and Navier-Stokes equations , 2003 .

[34]  P. L. George,et al.  Automatic Mesh Generation: Application to Finite Element Methods , 1992 .

[35]  Luiz Velho,et al.  A unified approach for hierarchical adaptive tesselation of surfaces , 1999, TOGS.

[36]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[37]  Scott A. Berry,et al.  X-33 Hypersonic Boundary Layer Transition , 1999 .

[38]  J. Anderson,et al.  Hypersonic and High-Temperature Gas Dynamics , 2019 .

[39]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[40]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[41]  Robert Haimes Techniques for Interactive and Interrogative Scientific Volumetric Visualization , 1991 .

[42]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[43]  S. Rebay,et al.  GMRES Discontinuous Galerkin Solution of the Compressible Navier-Stokes Equations , 2000 .

[44]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[45]  Peter A. Gnoffo,et al.  Computational Aerothermodynamic Simulation Issues on Unstructured Grids , 2004 .

[46]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[47]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[48]  Chongam Kim,et al.  Cures for the shock instability: development of a shock-stable Roe scheme , 2003 .

[49]  D. Gaitonde,et al.  Accuracy of flux-split algorithms in high-speed viscous flows , 1993 .

[50]  G. Moretti,et al.  A time-dependent computational method for blunt body flows. , 1966 .

[51]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .

[52]  S. Berry,et al.  X-33 Turbulent Aeroheating Measurements and Predictions , 2002 .

[53]  Steven M. Klausmeyer,et al.  Data summary from the first AIAA Computational Fluid Dynamics Drag Prediction Workshop , 2003 .

[54]  Natalia Alexandrov,et al.  Opportunities for Breakthroughs in Large-Scale Computational Simulation and Design , 2002 .

[55]  Pieter Buning Sources of error in the graphical analysis of CFD results , 1988, J. Sci. Comput..

[56]  Christoph W. Ueberhuber Numerical computation : methods, software, and analysis , 1997 .

[57]  Yuan Zhou,et al.  Pixel-exact rendering of spacetime finite element solutions , 2004, IEEE Visualization 2004.

[58]  Cheatwood F. McNeil,et al.  User''s Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) , 1996 .

[59]  H Julian Allen,et al.  A Study of the Motion and Aerodynamic Heating of Missiles Entering the Earth's Atmosphere at High Supersonic Speeds , 1957 .

[60]  G. Richter An Optimal-Order Error Estimate for the Discontinuous Galerkin Method , 1988 .

[61]  Phil Williams North Atlantic Treaty Organization , 1994 .

[62]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[63]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[64]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .