Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems

In this paper, we analyze the behavior of the alternating direction method of multipliers (ADMM), for solving a family of nonconvex problems. Our focus is given to the well-known consensus and sharing problems, both of which have wide applications in signal processing. We show that in the presence of nonconvex objective function, classical ADMM is able to reach the set of stationary solutions for these problems, if the stepsize is chosen large enough. An interesting consequence of our analysis is that the ADMM is convergent for a family of sharing problems, regardless of the number of blocks or the convexity of the objective function. Our analysis is broadly applicable to many ADMM variants involving proximal update rules and various flexible block selection rules.

[1]  Shiqian Ma,et al.  On the Global Linear Convergence of the ADMM with MultiBlock Variables , 2014, SIAM J. Optim..

[2]  Bingsheng He,et al.  The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.

[3]  Shuzhong Zhang,et al.  First-Order Algorithms for Convex Optimization with Nonseparable Objective and Coupled Constraints , 2017 .

[4]  John N. Tsitsiklis,et al.  Neuro-Dynamic Programming , 1996, Encyclopedia of Machine Learning.

[5]  Yin Zhang,et al.  An Alternating Direction Algorithm for Nonnegative Matrix Factorization , 2010 .

[6]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[7]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[8]  Jonathan Eckstein Splitting methods for monotone operators with applications to parallel optimization , 1989 .

[9]  Chao Yang,et al.  Alternating direction methods for classical and ptychographic phase retrieval , 2012 .

[10]  Georgios B. Giannakis,et al.  Distributed Clustering Using Wireless Sensor Networks , 2011, IEEE Journal of Selected Topics in Signal Processing.

[11]  Cédric Févotte,et al.  Alternating direction method of multipliers for non-negative matrix factorization with the beta-divergence , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[12]  Y. Zhang,et al.  Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization , 2014, Optim. Methods Softw..

[13]  Tsung-Hui Chang,et al.  A Proximal Dual Consensus ADMM Method for Multi-Agent Constrained Optimization , 2014, IEEE Transactions on Signal Processing.

[14]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[15]  Fu Lin,et al.  Design of Optimal Sparse Feedback Gains via the Alternating Direction Method of Multipliers , 2011, IEEE Transactions on Automatic Control.

[16]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[17]  Xiaoming Yuan,et al.  A Note on the Alternating Direction Method of Multipliers , 2012, J. Optim. Theory Appl..

[18]  Asuman Ozdaglar,et al.  Cooperative distributed multi-agent optimization , 2010, Convex Optimization in Signal Processing and Communications.

[19]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[20]  Richard G. Baraniuk,et al.  Fast Alternating Direction Optimization Methods , 2014, SIAM J. Imaging Sci..

[21]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[22]  Alejandro Ribeiro,et al.  Consensus in Ad Hoc WSNs With Noisy Links—Part I: Distributed Estimation of Deterministic Signals , 2008, IEEE Transactions on Signal Processing.

[23]  Yin Zhang,et al.  An alternating direction algorithm for matrix completion with nonnegative factors , 2011, Frontiers of Mathematics in China.

[24]  Shiqian Ma,et al.  Fast alternating linearization methods for minimizing the sum of two convex functions , 2009, Math. Program..

[25]  Jack Yurkiewicz,et al.  Constrained optimization and Lagrange multiplier methods, by D. P. Bertsekas, Academic Press, New York, 1982, 395 pp. Price: $65.00 , 1985, Networks.

[26]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[27]  Zhi-Quan Luo,et al.  A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization , 2012, SIAM J. Optim..

[28]  Asuman E. Ozdaglar,et al.  On the O(1=k) convergence of asynchronous distributed alternating Direction Method of Multipliers , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[29]  Nikos D. Sidiropoulos,et al.  Parallel Algorithms for Constrained Tensor Factorization via Alternating Direction Method of Multipliers , 2014, IEEE Transactions on Signal Processing.

[30]  Xu Li,et al.  Min Flow Rate Maximization for Software Defined Radio Access Networks , 2013, IEEE Journal on Selected Areas in Communications.

[31]  Saeed Ghadimi,et al.  Accelerated gradient methods for nonconvex nonlinear and stochastic programming , 2013, Mathematical Programming.

[32]  Shiqian Ma,et al.  Sparse Inverse Covariance Selection via Alternating Linearization Methods , 2010, NIPS.

[33]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[34]  Shiqian Ma,et al.  Solving Multiple-Block Separable Convex Minimization Problems Using Two-Block Alternating Direction Method of Multipliers , 2013, ArXiv.

[35]  Shiqian Ma,et al.  Alternating direction method of multipliers for real and complex polynomial optimization models , 2014 .

[36]  Wotao Yin,et al.  Parallel Multi-Block ADMM with o(1 / k) Convergence , 2013, Journal of Scientific Computing.

[37]  Francisco Facchinei,et al.  Decomposition by Partial Linearization: Parallel Optimization of Multi-Agent Systems , 2013, IEEE Transactions on Signal Processing.

[38]  Shiqian Ma,et al.  A block coordinate descent method of multipliers: Convergence analysis and applications , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[39]  Xiaodi Bai,et al.  Asset Allocation under the Basel Accord Risk Measures , 2013, 1308.1321.

[40]  Renato D. C. Monteiro,et al.  Iteration-Complexity of Block-Decomposition Algorithms and the Alternating Direction Method of Multipliers , 2013, SIAM J. Optim..

[41]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[42]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[43]  Marc Teboulle,et al.  Proximal alternating linearized minimization for nonconvex and nonsmooth problems , 2013, Mathematical Programming.

[44]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[45]  Zhi-Quan Luo,et al.  Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems , 2015, ICASSP.

[46]  Bingsheng He,et al.  Linearized Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming , 2011 .

[47]  Damek Davis,et al.  Convergence Rate Analysis of Several Splitting Schemes , 2014, 1406.4834.

[48]  Saeed Ghadimi,et al.  Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization , 2013, Mathematical Programming.

[49]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[50]  Baochun Li,et al.  An Alternating Direction Method Approach to Cloud Traffic Management , 2014 .

[51]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[52]  DengWei,et al.  Parallel Multi-Block ADMM with o(1 / k) Convergence , 2017 .

[53]  James T. Kwok,et al.  Asynchronous Distributed ADMM for Consensus Optimization , 2014, ICML.

[54]  Bingsheng He,et al.  On the Proximal Jacobian Decomposition of ALM for Multiple-Block Separable Convex Minimization Problems and Its Relationship to ADMM , 2016, J. Sci. Comput..