Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining

[1]  Didem Ozevin,et al.  Machine learning model to predict welding quality using air-coupled acoustic emission and weld inputs , 2020, J. Intell. Manuf..

[2]  P. Cunningham,et al.  Detecting voids in 3D printing using melt pool time series data , 2020, Journal of Intelligent Manufacturing.

[3]  Sreekumar Muthuswamy,et al.  Identification and classification of materials using machine vision and machine learning in the context of industry 4.0 , 2019, Journal of Intelligent Manufacturing.

[4]  Jay Lee,et al.  Quality analysis in metal additive manufacturing with deep learning , 2020, Journal of Intelligent Manufacturing.

[5]  Visakan Kadirkamanathan,et al.  A data-driven approach for predicting printability in metal additive manufacturing processes , 2020, Journal of Intelligent Manufacturing.

[6]  Alvaro Rodriguez-Tajes,et al.  A convolutional approach to quality monitoring for laser manufacturing , 2019, J. Intell. Manuf..

[7]  Yunhui Xie,et al.  A neural lens for super-resolution biological imaging , 2019, Journal of Physics Communications.

[8]  David Romero,et al.  Smart manufacturing: Characteristics, technologies and enabling factors , 2019 .

[9]  Huiyu Zhou,et al.  Using deep neural network with small dataset to predict material defects , 2019, Materials & Design.

[10]  Timo Aila,et al.  A Style-Based Generator Architecture for Generative Adversarial Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Jan Kautz,et al.  Video-to-Video Synthesis , 2018, NeurIPS.

[12]  James A. Grant-Jacob,et al.  Machine learning for 3D simulated visualization of laser machining , 2018, Optics Express.

[13]  이지형 Data Driven Approach의 시대 , 2018 .

[14]  Sung-Hoon Ahn,et al.  Smart Machining Process Using Machine Learning: A Review and Perspective on Machining Industry , 2018, International Journal of Precision Engineering and Manufacturing-Green Technology.

[15]  Ben Mills,et al.  Predictive capabilities for laser machining via a neural network. , 2018, Optics express.

[16]  Ying Zhang,et al.  A strategy to apply machine learning to small datasets in materials science , 2018, npj Computational Materials.

[17]  Shie Mannor,et al.  Deep Learning Reconstruction of Ultra-Short Pulses , 2018, ArXiv.

[18]  Daniel J. Heath,et al.  Single-pulse ablation of multi-depth structures via spatially filtered binary intensity masks. , 2018, Applied optics.

[19]  Š.,et al.  Machine learning for 3 D simulated visualization of laser machining , 2018 .

[20]  Daniel J. Förster,et al.  Power Spectral Density Evaluation of Laser Milled Surfaces , 2017, Materials.

[21]  V. Mazhukin Nanosecond Laser Ablation: Mathematical Models, Computational Algorithms, Modeling , 2017 .

[22]  Luc Van Gool,et al.  Pose Guided Person Image Generation , 2017, NIPS.

[23]  Alexei A. Efros,et al.  Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[24]  Vladimir Stojanovic,et al.  A nature inspired optimal control of pneumatic-driven parallel robot platform , 2017 .

[25]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Giuseppe Casalino,et al.  Statistical Analysis and Modelling of an Yb: KGW Femtosecond Laser Micro-drilling Process , 2017 .

[28]  Vladimir Stojanovic,et al.  Identification of time‐varying OE models in presence of non‐Gaussian noise: Application to pneumatic servo drives , 2016 .

[29]  V. Stojanovic,et al.  Application of cuckoo search algorithm to constrained control problem of a parallel robot platform , 2016, The International Journal of Advanced Manufacturing Technology.

[30]  Patrick M. Pilarski,et al.  Intelligent laser welding through representation, prediction, and control learning: An architecture with deep neural networks and reinforcement learning , 2016 .

[31]  R. Cochrane,et al.  Microstructure evolution and mechanical properties of drop-tube processed, rapidly solidified grey cast iron , 2016 .

[32]  Joaquim Ciurana,et al.  Modeling pulsed laser micromachining of micro geometries using machine-learning techniques , 2015, J. Intell. Manuf..

[33]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[34]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[35]  Laurent A. Francis,et al.  Effects of Laser Operating Parameters on Piezoelectric Substrates Micromachining with Picosecond Laser , 2014, Micromachines.

[36]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[37]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[38]  Sotirios A. Tsaftaris,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 , 2015, Lecture Notes in Computer Science.

[39]  Daniel J. Heath,et al.  Laser ablation via programmable image projection for submicron dimension machining in diamond , 2014 .

[40]  Yongbin Zeng,et al.  Electrochemical micromachining of micro-dimple arrays on cylindrical inner surfaces using a dry-film photoresist , 2014 .

[41]  Francesco P. Mezzapesa,et al.  Minimize friction of lubricated laser-microtextured-surfaces by tuning microholes depth , 2014 .

[42]  R. Eason,et al.  Parametric study of the rapid fabrication of glass nanofoam via femtosecond laser irradiation , 2014 .

[43]  Vladimir Stojanovic,et al.  Adaptive Input Design for Identification of Output Error Model with Constrained Output , 2014, Circuits Syst. Signal Process..

[44]  Patrick M. Pilarski,et al.  First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning , 2014 .

[45]  Giuseppe Casalino,et al.  An artificial neural network approach for the control of the laser milling process , 2012, The International Journal of Advanced Manufacturing Technology.

[46]  P. M. Lugarà,et al.  Varying the Geometry of Laser Surface Microtexturing to Enhance the Frictional Behavior of Lubricated Steel Surfaces , 2013 .

[47]  B. Jaeggi,et al.  From fs to Sub-ns: Dependence of the Material Removal Rate on the Pulse Duration for Metals , 2013 .

[48]  Andreas Otto,et al.  Multiphysical Simulation of Laser Material Processing , 2012 .

[49]  S. Edwardson,et al.  Effects of laser operating parameters on metals micromachining with ultrafast lasers , 2009 .

[50]  Minoru Obara,et al.  Friction characteristics of submicrometre-structured surfaces fabricated by particle-assisted near-field enhancement with femtosecond laser , 2007 .

[51]  L. Hesselink,et al.  Laser ablation of silicon in water with nanosecond and femtosecond pulses. , 2005, Optics letters.

[52]  George K. Knopf,et al.  Neural network modeling and analysis of the material removal process during laser machining , 2003 .

[53]  Eric Audouard,et al.  Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy , 2002 .

[54]  Saulius Juodkazis,et al.  Microfabrication by femtosecond laser irradiation , 2000, LASE.

[55]  J. A. Stegemann,et al.  A Glossary of Basic Neural Network Terminology for Regression Problems , 1999, Neural Computing & Applications.

[56]  Boris N. Chichkov,et al.  Precise laser ablation with ultrashort pulses , 1997 .

[57]  J. Liu Simple technique for measurements of pulsed Gaussian-beam spot sizes. , 1982, Optics letters.

[58]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .