A Stefan problem modelling dissolution and precipitation in porous media

A simple one-dimensional model for crystal dissolution and precipitation is presented. The model equations resemble a one-phase Stefan problem and involve nonlinear and multi-valued exchange rates at the free boundary. The original equations are formulated on a variable domain. By transforming the model to a fixed domain and applying a regularization, we prove the existence and uniqueness of a solution. The paper is concluded by numerical simulations.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  Timothy D. Scheibe,et al.  Smoothed particle hydrodynamics model for pore-scale flow, reactive transport and mineral precipitation. , 2006 .

[3]  Jérôme Pousin,et al.  Diffusion and dissolution/precipitation in an open porous reactive medium , 1997 .

[4]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[5]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[6]  Qinjun Kang,et al.  Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media , 2006 .

[7]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[8]  P. Knabner,et al.  An analysis of crystal dissolution fronts in flows through porous media , 1998 .

[9]  C. J. Duijn,et al.  Crystal dissolution and precipitation in porous media: Pore scale analysis , 2004 .

[10]  Space-time discontinuous Galerkin method for wet-chemical etching of microstructures , 2004 .

[11]  Willi Jäger,et al.  Reactive transport through an array of cells with semi-permeable membranes , 1994 .

[12]  Thierry Gallouët,et al.  Instantaneous and noninstantaneous dissolution: approximation by the finite volume method , 1999 .

[13]  B. W. van de Fliert,et al.  A Generalized Stefan Problem in a Diffusion Model with Evaporation , 2000, SIAM J. Appl. Math..

[14]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Peter Knabner,et al.  An Analysis of Crystal Dissolution Fronts in Flows through Porous Media Part 2: Incompatible Boundar , 1996 .

[17]  A. Friedman,et al.  The Stefan problem with kinetic condition at the free boundary , 1965 .

[18]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[19]  Jérôme Pousin,et al.  An efficient numerical scheme for precise time integration of a diffusion-dissolution/precipitation chemical system , 2005, Math. Comput..

[20]  H. Kuiken,et al.  Etching: a two-dimensional mathematical approach , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.