NMR Quantum Information Processing

AbstractNuclear magnetic resonance (NMR) has provided a valuable experimental testbed for quantum information processing (QIP). Here, we briefly review the use of nuclear spins as qubits, and discuss the current status of NMR-QIP. Advances in the techniques available for control are described along with the various implementations of quantum algorithms and quantum simulations that have been performed using NMR. The recent application of NMR control techniques to other quantum computing systems are reviewed before concluding with a description of the efforts currently underway to transition to solid state NMR systems that hold promise for scalable architectures. PACS: 03.67.-a, 03.67.Lx

[1]  Farrokh Vatan,et al.  Algorithmic cooling and scalable NMR quantum computers , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  A. Imamo luc,et al.  Quantum Computation Using Quantum Dot Spins and Microcavities , 2000 .

[3]  Daniel Loss,et al.  Spintronics and quantum dots for quantum computing and quantum communication , 2000 .

[4]  Jeffrey Yepez,et al.  QUANTUM LATTICE-GAS MODEL FOR THE DIFFUSION EQUATION , 2001 .

[5]  Isaac L. Chuang,et al.  Demonstration of quantum logic gates in liquid crystal nuclear magnetic resonance , 2000 .

[6]  John S. Waugh,et al.  Theory of broadband spin decoupling , 1982 .

[7]  Timothy F. Havel,et al.  Quantum Simulations on a Quantum Computer , 1999, quant-ph/9905045.

[8]  Pines,et al.  Broadband and adiabatic inversion of a two-level system by phase-modulated pulses. , 1985, Physical review. A, General physics.

[9]  Mang Feng,et al.  Experimental implementation of dense coding using nuclear magnetic resonance , 2000 .

[10]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[11]  G P Berman,et al.  Solid-state quantum computer based on scanning tunneling microscopy. , 2001, Physical review letters.

[12]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[13]  F. Schmidt-Kaler,et al.  Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer , 2003, Nature.

[14]  D Greenbaum,et al.  Spin diffusion of correlated two-spin states in a dielectric crystal. , 2004, Physical review letters.

[15]  Navin Khaneja,et al.  Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2002 .

[16]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[17]  W. Zurek Environment-induced superselection rules , 1982 .

[18]  MIT,et al.  Non-thermal nuclear magnetic resonance quantum computing using hyperpolarized xenon , 2001 .

[19]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[20]  N. B. Freeman An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer , 1998, quant-ph/9808039.

[21]  Nicolas Boulant,et al.  Experimental Concatenation of Quantum Error Correction with Decoupling , 2002, Quantum Inf. Process..

[22]  Daniel A Lidar,et al.  Magnetic resonance realization of decoherence-free quantum computation. , 2003, Physical review letters.

[23]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[24]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[25]  Warren S. Warren,et al.  The Usefulness of NMR Quantum Computing , 1997 .

[26]  Timothy F. Havel,et al.  Robust control of quantum information , 2003, quant-ph/0307062.

[27]  R Laflamme,et al.  Benchmarking quantum computers: the five-qubit error correcting code. , 2001, Physical review letters.

[28]  R. Tycko,et al.  Broadband Population Inversion , 1983 .

[29]  Jeffrey Yepez,et al.  Lattice-Gas Quantum Computation , 1998 .

[30]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[31]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[32]  Jan-Markus Schwindt Physik , 1973, Universum ohne Dinge.

[33]  D. G. Cory,et al.  FIRST DIRECT MEASUREMENT OF THE SPIN DIFFUSION RATE IN A HOMOGENOUS SOLID , 1998 .

[34]  T. Hogg Quantum search heuristics , 2000 .

[35]  Steffen J. Glaser,et al.  Nuclear magnetic resonance quantum computing exploiting the pure spin state of para hydrogen , 2000 .

[36]  Timothy F. Havel,et al.  Method for modeling decoherence on a quantum-information processor , 2003, quant-ph/0303115.

[37]  Ray Freeman,et al.  Band-selective radiofrequency pulses , 1991 .

[38]  S. Glaser,et al.  Unitary control in quantum ensembles: maximizing signal intensity in coherent spectroscopy , 1998, Science.

[39]  E. Knill,et al.  Complete quantum teleportation using nuclear magnetic resonance , 1998, Nature.

[40]  Amr Fahmy,et al.  Approaching five-bit NMR quantum computing , 2000 .

[41]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[42]  A. J. Shaka,et al.  Composite pulses with dual compensation , 1983 .

[43]  Debbie W. Leung,et al.  Universal simulation of Markovian quantum dynamics , 2001 .

[44]  Timothy F. Havel,et al.  Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points , 2003 .

[45]  R. Feynman Simulating physics with computers , 1999 .

[46]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[47]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[48]  M. Mehring,et al.  Entanglement between an electron and a nuclear spin 1/2. , 2002, Physical review letters.

[49]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[50]  John Guckenheimer,et al.  Fixed point theory of iterative excitation schemes in NMR , 1985 .

[51]  Hoult,et al.  Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation. , 1985, Physical review. A, General physics.

[52]  Timothy F. Havel,et al.  Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.

[53]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[54]  Dieter Suter,et al.  Scalable architecture for spin-based quantum computers with a single type of gate , 2002 .

[55]  Debbie W. Leung,et al.  Realization of quantum process tomography in NMR , 2000, quant-ph/0012032.

[56]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[57]  Thaddeus D. Ladd,et al.  Solid-State Silicon NMR Quantum Computer , 2003 .

[58]  Garett M. Leskowitz,et al.  Three-qubit nuclear magnetic resonance quantum information processing with a single-crystal solid , 2003 .

[59]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[60]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[61]  J. A. Jones,et al.  Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer , 1998, quant-ph/9801027.

[62]  L M Vandersypen,et al.  Experimental realization of an order-finding algorithm with an NMR quantum computer. , 2000, Physical review letters.

[63]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[64]  L. Vandersypen,et al.  Realization of Logically Labeled Effective Pure States for Bulk Quantum Computation , 1999, quant-ph/9905041.

[65]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[66]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[67]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[68]  Seth Lloyd,et al.  Experimental implementation of the quantum baker's map. , 2002, Physical review letters.

[69]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[70]  J. A. Jones,et al.  Tackling systematic errors in quantum logic gates with composite rotations , 2003 .

[71]  D G Cory,et al.  Pulse error compensating symmetric magic-echo trains. , 2003, Journal of magnetic resonance.

[72]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[73]  Raymond Laflamme,et al.  NMR Greenberger–Horne–Zeilinger states , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[74]  Jaehyun Kim,et al.  Implementation of the refined Deutsch-Jozsa algorithm on a three-bit NMR quantum computer , 1999, quant-ph/9910015.

[75]  Paola Cappellaro,et al.  Encoding multiple quantum coherences in non-commuting bases , 2003 .

[76]  Lorenza Viola,et al.  Implementation of universal control on a decoherence-free qubit , 2002 .

[77]  J. A. Jones,et al.  Use of composite rotations to correct systematic errors in NMR quantum computation , 1999, quant-ph/9911072.

[78]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[79]  John M. Martinis,et al.  Accurate Control of Josephson Phase Qubits , 2003 .

[80]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[81]  Y Yamamoto,et al.  All-silicon quantum computer. , 2002, Physical review letters.

[82]  Dionisis Stefanatos,et al.  Optimal control of coupled spins in the presence of longitudinal and transverse relaxation , 2004 .

[83]  Timothy F. Havel,et al.  Incoherent Noise and Quantum Control , 2003 .

[84]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[85]  Seth Lloyd,et al.  Experimental demonstration of greenberger-horne-zeilinger correlations using nuclear magnetic resonance , 2000 .

[86]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[87]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[88]  N. Bloembergen,et al.  On the interaction of nuclear spins in a crystalline lattice , 1949 .

[89]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.

[90]  M. Mosca,et al.  APPROXIMATE QUANTUM COUNTING ON AN NMR ENSEMBLE QUANTUM COMPUTER , 1999 .

[91]  E M Fortunato,et al.  Implementation of the quantum Fourier transform. , 2001, Physical review letters.

[92]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[93]  Dolores C. Miller,et al.  NUCLEAR MAGNETIC RESONANCE QUANTUM COMPUTING USING LIQUID CRYSTAL SOLVENTS , 1999 .

[94]  Warren S. Warren,et al.  Effects of arbitrary laser or NMR pulse shapes on population inversion and coherence , 1984 .

[95]  T. P. Das,et al.  Mathematical Analysis of the Hahn Spin-Echo Experiment , 1954 .

[96]  L. Vandersypen,et al.  Implementation of a three-quantum-bit search algorithm , 1999, quant-ph/9910075.

[97]  Debbie Leung,et al.  Experimental realization of a two-bit phase damping quantum code , 1999 .

[98]  K. Kraus General state changes in quantum theory , 1971 .

[99]  D. E. Chang,et al.  NMR implementation of a building block for scalable quantum computation , 2001 .

[100]  S. Wimperis,et al.  Broadband, Narrowband, and Passband Composite Pulses for Use in Advanced NMR Experiments , 1994 .

[101]  S. Ya. Kilin,et al.  Quantum computation using the 13C nuclear spins near the single NV defect center in diamond , 2001 .

[102]  J. Pauly,et al.  Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. , 1991, IEEE transactions on medical imaging.

[103]  T. Hogg,et al.  Experimental implementation of an adiabatic quantum optimization algorithm. , 2003, Physical review letters.