An Integrated Remote-Sensing and GIS Approach for Mapping Past Tin Mining Landscapes in Northwest Iberia

Northwest Iberia can be considered as one of the main areas where tin was exploited in antiquity. However, the location of ancient tin mining and metallurgy, their date and the intensity of tin production are still largely uncertain. The scale of mining activity and its socio-economical context have not been truly assessed, nor its evolution over time. With the present study, we intend to present an integrated, multiscale, multisensor and interdisciplinary methodology to tackle this problem. The integration of airborne LiDAR and historic aerial imagery has enabled us to identify and map ancient tin mining remains on the Tinto valley (Viana do Castelo, northern Portugal). The combination with historic mining documentation and literature review allowed us to confirm the impact of modern mining and define the best-preserved ancient mining areas for further archaeological research. After data processing and mapping, subsequent ground-truthing involved field survey and geological sampling that confirmed cassiterite exploitation as the key feature of the mining works. This non-invasive approach is of importance for informing future research and management of these landscapes.

[1]  João P. Honrado,et al.  From Archived Historical Aerial Imagery to Informative Orthophotos: A Framework for Retrieving the Past in Long-Term Socioecological Research , 2019, Remote. Sens..

[2]  S. Heinrich,et al.  Evidence for Bronze Age and Medieval tin placer mining in the Erzgebirge mountains, Saxony (Germany) , 2019, Geoarchaeology.

[3]  B. Llamas,et al.  Use of LIDAR and photointerpretation to map the water supply at the Las Murias‐Los Tallares Roman gold mine (Castrocontrigo, León, Spain) , 2018 .

[4]  J. Fernández-Lozano,et al.  Improving archaeological prospection using localized UAVs assisted photogrammetry: An example from the Roman Gold District of the Eria River Valley (NW Spain) , 2016 .

[5]  R. Hesse,et al.  LiDAR‐derived Local Relief Models – a new tool for archaeological prospection , 2010 .

[6]  B. Llamas,et al.  Roman Gold Mining at “Las Miédolas” (NW Spain): Lidar and Photo Interpretation in the Analysis of “Peines” System , 2021, Geoheritage.

[7]  David T. Potere,et al.  Horizontal Positional Accuracy of Google Earth's High-Resolution Imagery Archive , 2008, Sensors.

[8]  J. Böhner,et al.  Spatial Prediction of Soil Attributes Using Terrain Analysis and Climate Regionalisation , 2006 .

[9]  Benjamin Štular,et al.  Documentation of Archaeology-Specific Workflow for Airborne LiDAR Data Processing , 2021, Geosciences.

[10]  Rui J. C. Silva,et al.  Ancient tin production: Slags from the Iron Age Carvalhelhos hillfort (NW Iberian Peninsula) , 2018 .

[11]  Archaeological research of ancient mining landscapes in Galicia (Spain) using Airborne Laser Scanning data. , 2014 .

[12]  João Fonte,et al.  Novas evidências de mineração aurífera e estanhífera de época Romana no alto vale do Tâmega (Montalegre e Boticas, Norte de Portugal) , 2017 .

[13]  A. Amorim,et al.  O Arquivo das Minas do Norte de Portugal (1839-2011) , 2016 .

[14]  J. Remondo,et al.  Gold-bearing Plio-Quaternary deposits: Insights from airborne LiDAR technology into the landscape evolution during the early Roman mining works in north-west Spain , 2019, Journal of Archaeological Science: Reports.

[15]  M. I. C. Alves ANÁLISE DIMENSIONAL DE SEDIMENTOS FLUVIAIS: FORMAÇÃO DE ALVARÃES E DEPÓSITOS DE TERRAÇOS DA BACIA DO RIO LIMA (NW DE PORTUGAL) , 1999 .

[16]  Rui J. C. Silva,et al.  Northwestern Iberian Tin Mining from Bronze Age to Modern Times: an overview , 2017 .

[17]  B. J,et al.  Soil regionalisation by means of terrain analysis and process parameterisation , 2002 .

[18]  José Manuel Costa-García,et al.  A Modern Age redoubt in a possible Roman camp. The relationship between two defensive models in Campos (Vila Nova de Cerveira, Minho Valley, Portugal) , 2016 .

[19]  J. Fernández-Lozano,et al.  The anthropic landscape imprint around one of the largest Roman hydraulic gold mines in Europe: Sierra del Teleno (NW Spain) , 2020 .

[20]  Maja Somrak,et al.  Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping , 2019, Remote. Sens..

[21]  João Fonte,et al.  Revisitando os Chões de Alpompé com técnicas de deteção remota: novas evidências sobre os sistemas defensivos Romano-Republicanos , 2020, Cuadernos de Prehistoria y Arqueología.

[22]  João Fonte,et al.  Alto da Cerca (Valpaços, Portugal): um assentamento militar romano na Serra da Padrela e sua relação com o distrito mineiro de Tresminas , 2016 .

[23]  Klemen Zaksek,et al.  Sky-View Factor as a Relief Visualization Technique , 2011, Remote. Sens..

[24]  B. Llamas,et al.  Analysis Using LIDAR and Photointerpretation of Las Murias-Los Tallares (Castrocontrigo, León-Spain): One of the Biggest Roman Gold Mines to Use the “Peines” System , 2019, Geoheritage.

[25]  J. Fernández-Lozano,et al.  Using airborne LiDAR sensing technology and aerial orthoimages to unravel roman water supply systems and gold works in NW Spain (Eria valley, León) , 2015 .