Optimal but unequitable prophylactic distribution of vaccine

Highlights ► Develops an efficient framework to determine epidemic sizes in structured populations. ► Optimal allocation of vaccine is highly heterogeneous. ► For low vaccine supplies may be optimal to focus on a single population. ► Greater heterogeneity within populations leads to more equitable allocations.

[1]  Bryan T Grenfell,et al.  Synthesizing epidemiological and economic optima for control of immunizing infections , 2011, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Roy M. Anderson,et al.  Spatial heterogeneity and the design of immunization programs , 1984 .

[3]  R M May,et al.  Spatial, temporal, and genetic heterogeneity in host populations and the design of immunization programmes. , 1984, IMA journal of mathematics applied in medicine and biology.

[4]  Bruno Buonomo A simple analysis of vaccination strategies for rubella. , 2011, Mathematical biosciences and engineering : MBE.

[5]  C. Macken,et al.  Modeling targeted layered containment of an influenza pandemic in the United States , 2008, Proceedings of the National Academy of Sciences.

[6]  I. Longini,et al.  An optimization model for influenza A epidemics , 1978 .

[7]  O. Bjørnstad,et al.  Metapopulation Dynamics of Infectious Diseases , 2004 .

[8]  Timothy C. Reluga,et al.  Long-standing influenza vaccination policy is in accord with individual self-interest but not with the utilitarian optimum , 2007, Proceedings of the National Academy of Sciences.

[9]  V.L. Brown,et al.  The role of optimal control in assessing the most cost-effective implementation of a vaccination programme: HPV as a case study. , 2011, Mathematical biosciences.

[10]  J. Medlock,et al.  Optimizing Influenza Vaccine Distribution , 2009, Science.

[11]  Alison Galvani,et al.  Insights from epidemiological game theory into gender-specific vaccination against rubella. , 2009, Mathematical biosciences and engineering : MBE.

[12]  C. Fraser,et al.  Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States. , 2009, The New England journal of medicine.

[13]  T. Britton,et al.  Stochastic multitype epidemics in a community of households: estimation and form of optimal vaccination schemes. , 2004, Mathematical biosciences.

[14]  N. Becker,et al.  Optimal vaccination strategies for a community of households. , 1997, Mathematical biosciences.

[15]  Donald Ludwig,et al.  Final size distribution for epidemics , 1975 .

[16]  C. Castillo-Chavez,et al.  A note on the use of influenza vaccination strategies when supply is limited. , 2011, Mathematical biosciences and engineering : MBE.

[17]  C. Macken,et al.  Mitigation strategies for pandemic influenza in the United States. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Cecile Viboud,et al.  Vaccinating to Protect a Vulnerable Subpopulation , 2007, PLoS medicine.

[19]  Gregory A Poland,et al.  The 2009-2010 influenza pandemic: effects on pandemic and seasonal vaccine uptake and lessons learned for seasonal vaccination campaigns. , 2010, Vaccine.

[20]  Matt J. Keeling,et al.  Targeting vaccination against novel infections: risk, age and spatial structure for pandemic influenza in Great Britain , 2010, Journal of The Royal Society Interface.

[21]  D. Earn,et al.  Group interest versus self-interest in smallpox vaccination policy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Christopher A. Gilligan,et al.  Optimal control of epidemics in metapopulations , 2009, Journal of The Royal Society Interface.

[23]  Matthew W. Tanner,et al.  Finding optimal vaccination strategies under parameter uncertainty using stochastic programming. , 2008, Mathematical biosciences.

[24]  K. Hadeler,et al.  Optimal harvesting and optimal vaccination. , 2007, Mathematical biosciences.

[25]  Ana Perisic,et al.  Social Contact Networks and Disease Eradicability under Voluntary Vaccination , 2009, PLoS Comput. Biol..

[26]  Christopher A Gilligan,et al.  Optimizing the control of disease infestations at the landscape scale , 2007, Proceedings of the National Academy of Sciences.

[27]  A. Barbour,et al.  Epidemics and random graphs , 1990 .

[28]  Derek A T Cummings,et al.  Influenza transmission in households during the 1918 pandemic. , 2011, American journal of epidemiology.

[29]  R. May,et al.  Directly transmitted infections diseases: control by vaccination. , 1982, Science.

[30]  Marcel Salathé,et al.  Dynamics and Control of Diseases in Networks with Community Structure , 2010, PLoS Comput. Biol..

[31]  Nathan Green,et al.  Optimal intervention for an epidemic model under parameter uncertainty. , 2007, Mathematical biosciences.

[32]  Holly Gaff,et al.  Optimal control applied to vaccination and treatment strategies for various epidemiological models. , 2009, Mathematical biosciences and engineering : MBE.

[33]  D. Cummings,et al.  Strategies for mitigating an influenza pandemic , 2006, Nature.

[34]  Rob Deardon,et al.  Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK , 2006, Nature.

[35]  Jeffrey C. Kwong,et al.  Optimal Pandemic Influenza Vaccine Allocation Strategies for the Canadian Population , 2010, PloS one.

[36]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[37]  Diána H. Knipl,et al.  Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. , 2009, Mathematical biosciences and engineering : MBE.

[38]  N. Bailey The Total Size of a General Stochastic Epidemic , 1953 .

[39]  C. Farrington,et al.  Vaccine coverage: recent trends and future prospects. , 1992, BMJ.

[40]  E. Shim Prioritization of delayed vaccination for pandemic influenza. , 2011, Mathematical biosciences and engineering : MBE.

[41]  Matt J. Keeling,et al.  The role of pre-emptive culling in the control of foot-and-mouth disease , 2009, Proceedings of the Royal Society B: Biological Sciences.

[42]  Optimal risk management versus willingness to pay for BVDV control options. , 2005, Preventive veterinary medicine.

[43]  A. W. Jalvingh,et al.  A simulation of Johne's disease control. , 2002, Preventive veterinary medicine.

[44]  R. Anderson,et al.  Measles in developing countries. Part II. The predicted impact of mass vaccination , 1988, Epidemiology and Infection.

[45]  Ian M. Hall,et al.  Comparison of smallpox outbreak control strategies using a spatial metapopulation model , 2007, Epidemiology and Infection.

[46]  Shweta Bansal,et al.  A Comparative Analysis of Influenza Vaccination Programs , 2006, PLoS medicine.

[47]  Julien Arino,et al.  An epidemiology model that includes a leaky vaccine with a general waning function , 2004 .

[48]  D. Earn,et al.  Generality of the Final Size Formula for an Epidemic of a Newly Invading Infectious Disease , 2006, Bulletin of mathematical biology.