Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain

In the first study comparing high angular resolution diffusion MRI (dMRI) in the human brain to axonal orientation measurements from polarization-sensitive optical coherence tomography (PSOCT), we compare the accuracy of orientation estimates from various dMRI sampling schemes and reconstruction methods. We find that, if the reconstruction approach is chosen carefully, single-shell dMRI data can yield the same accuracy as multi-shell data, and only moderately lower accuracy than a full Cartesian-grid sampling scheme. Our results suggest that current dMRI reconstruction approaches do not benefit substantially from ultra-high b-values or from very large numbers of diffusion-encoding directions. We also show that accuracy remains stable across dMRI voxel sizes of 1 mm or smaller but degrades at 2 mm, particularly in areas of complex white-matter architecture. We also show that, as the spatial resolution is reduced, axonal configurations in a dMRI voxel can no longer be modeled as a small set of distinct axon populations, violating an assumption that is sometimes made by dMRI reconstruction techniques. Our findings have implications for in vivo studies and illustrate the value of PSOCT as a source of ground-truth measurements of white-matter organization that does not suffer from the distortions typical of histological techniques.

[1]  Suzanne N Haber,et al.  Rules Ventral Prefrontal Cortical Axons Use to Reach Their Targets: Implications for Diffusion Tensor Imaging Tractography and Deep Brain Stimulation for Psychiatric Illness , 2011, The Journal of Neuroscience.

[2]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[3]  Stephan Saalfeld,et al.  Globally optimal stitching of tiled 3D microscopic image acquisitions , 2009, Bioinform..

[4]  Ann S. Choe,et al.  Validation of diffusion tensor MRI in the central nervous system using light microscopy: quantitative comparison of fiber properties , 2012, NMR in biomedicine.

[5]  Junfeng Zhu,et al.  Cross-validation of serial optical coherence scanning and diffusion tensor imaging: A study on neural fiber maps in human medulla oblongata , 2014, NeuroImage.

[6]  Adam J. Black,et al.  Quantifying three-dimensional optic axis using polarization-sensitive optical coherence tomography. , 2016, Journal of biomedical optics.

[7]  Mark I Malterud Pushing it to the limits. , 2016, General dentistry.

[8]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[9]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[10]  Monique M. B. Breteler,et al.  Compressed Sensing Diffusion Spectrum Imaging for Accelerated Diffusion Microstructure MRI in Long-Term Population Imaging , 2018, Front. Neurosci..

[11]  Myung-Ho In,et al.  High-resolution diffusion MRI at 7T using a three-dimensional multi-slab acquisition , 2016, NeuroImage.

[12]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[13]  Manuel Graña,et al.  Model‐based analysis of multishell diffusion MR data for tractography: How to get over fitting problems , 2012, Magnetic resonance in medicine.

[14]  R. Goebel,et al.  Histological validation of high-resolution DTI in human post mortem tissue , 2015, Front. Neuroanat..

[15]  Thomas E. Nichols,et al.  Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects , 2018, NeuroImage.

[16]  A. Connelly,et al.  Determination of the appropriate b value and number of gradient directions for high‐angular‐resolution diffusion‐weighted imaging , 2013, NMR in biomedicine.

[17]  B. Burgeth,et al.  Determination of the fibre orientation in composites using the structure tensor and local X-ray transform , 2010 .

[18]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[19]  Li-Wei Kuo,et al.  Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system , 2008, NeuroImage.

[20]  Christophe Lenglet,et al.  Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain , 2015, Journal of biomedical optics.

[21]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[22]  Maria Axelsson Estimating 3D fibre orientation in volume images , 2008, 2008 19th International Conference on Pattern Recognition.

[23]  Rachid Deriche,et al.  Quantitative Comparison of Reconstruction Methods for Intra-Voxel Fiber Recovery From Diffusion MRI , 2014, IEEE Transactions on Medical Imaging.

[24]  Timothy Edward John Behrens,et al.  High resolution diffusion-weighted imaging in fixed human brain using diffusion-weighted steady state free precession , 2009, NeuroImage.

[25]  Muhammad K. Al-Qaisi,et al.  Polarization-maintaining fiber based polarization-sensitive optical coherence tomography in spectral domain. , 2010, Optics letters.

[26]  Chuanmao Fan,et al.  Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography , 2013, Biomedical optics express.

[27]  Erick Jorge Canales-Rodríguez,et al.  Mathematical description of q‐space in spherical coordinates: Exact q‐ball imaging , 2009, Magnetic resonance in medicine.

[28]  Nikos K. Logothetis,et al.  Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque , 2014, Biological Cybernetics.

[29]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[30]  D. LeBihan,et al.  Validation of q-ball imaging with a diffusion fibre-crossing phantom on a clinical scanner , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Ahmad Raza Khan,et al.  3D structure tensor analysis of light microscopy data for validating diffusion MRI , 2015, NeuroImage.

[32]  Haitham N. Zaatari,et al.  Depth-resolved optic axis orientation in multiple layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-OCT). , 2005, Optics express.

[33]  Mark Jenkinson,et al.  Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging , 2017, NeuroImage.

[34]  Bruce Fischl,et al.  Highly accurate inverse consistent registration: A robust approach , 2010, NeuroImage.

[35]  Vaibhav A. Janve,et al.  Can increased spatial resolution solve the crossing fiber problem for diffusion MRI? , 2017, NMR in biomedicine.

[36]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[37]  Julien Cohen-Adad,et al.  Improving diffusion MRI using simultaneous multi-slice echo planar imaging , 2012, NeuroImage.

[38]  S. Matcher,et al.  Novel optical imaging technique to determine the 3-D orientation of collagen fibers in cartilage: variable-incidence angle polarization-sensitive optical coherence tomography. , 2009, Osteoarthritis and cartilage.

[39]  H. Iseki,et al.  Localization of nerve fiber bundles by polarization-sensitive optical coherence tomography , 2008, Journal of Neuroscience Methods.

[40]  Bennett A. Landman,et al.  Histological validation of diffusion MRI fiber orientation distributions and dispersion , 2018, NeuroImage.

[41]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[42]  Alex J. de Crespigny,et al.  The effects of brain tissue decomposition on diffusion tensor imaging and tractography , 2007, NeuroImage.

[43]  W. Baaré,et al.  An ex vivo imaging pipeline for producing high‐quality and high‐resolution diffusion‐weighted imaging datasets , 2011, Human brain mapping.

[44]  Alex J. de Crespigny,et al.  An approach to high resolution diffusion tensor imaging in fixed primate brain , 2007, NeuroImage.

[45]  Robert Turner,et al.  Slice accelerated diffusion‐weighted imaging at ultra‐high field strength , 2014, Magnetic resonance in medicine.

[46]  Fang-Cheng Yeh,et al.  Generalized ${ q}$-Sampling Imaging , 2010, IEEE Transactions on Medical Imaging.

[47]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[48]  Piotr Majka,et al.  Possum—A Framework for Three-Dimensional Reconstruction of Brain Images from Serial Sections , 2015, Neuroinformatics.

[49]  A. Dale,et al.  Quantitative Histological Validation of Diffusion MRI Fiber Orientation Distributions in the Rat Brain , 2010, PloS one.

[50]  R. Deriche,et al.  Design of multishell sampling schemes with uniform coverage in diffusion MRI , 2013, Magnetic resonance in medicine.

[51]  Kawin Setsompop,et al.  Motion‐robust sub‐millimeter isotropic diffusion imaging through motion corrected generalized slice dithered enhanced resolution (MC‐gSlider) acquisition , 2018, Magnetic resonance in medicine.

[52]  J. Tournier The biophysics of crossing fibres , 2010 .

[53]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[54]  David A. Boas,et al.  Blockface histology with optical coherence tomography: A comparison with Nissl staining , 2014, NeuroImage.

[55]  David D. Sampson,et al.  Robust reconstruction of local optic axis orientation with fiber-based polarization-sensitive optical coherence tomography. , 2018, Biomedical optics express.

[56]  A. Fercher,et al.  Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. , 2001, Optics express.

[57]  Karl Rohr,et al.  Rigid and non-rigid registration of polarized light imaging data for 3D reconstruction of the temporal lobe of the human brain at micrometer resolution , 2018, NeuroImage.

[58]  David A. Boas,et al.  as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity , 2018, NeuroImage.

[59]  Matthew D. Budde,et al.  Examining brain microstructure using structure tensor analysis of histological sections , 2012, NeuroImage.

[60]  Zhongping Chen,et al.  Depth-resolved birefringence and differential optical axis orientation measurements using fiber-based polarization-sensitive optical coherence tomography , 2004, SPIE BiOS.

[61]  M. V. van Gemert,et al.  Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography , 1997, European Conference on Biomedical Optics.

[62]  Timothy Edward John Behrens,et al.  Functional Segmentation of the Anterior Limb of the Internal Capsule: Linking White Matter Abnormalities to Specific Connections , 2018, The Journal of Neuroscience.

[63]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[64]  Suzanne N Haber,et al.  Frontal Cortical and Subcortical Projections Provide a Basis for Segmenting the Cingulum Bundle: Implications for Neuroimaging and Psychiatric Disorders , 2014, The Journal of Neuroscience.

[65]  Ruopeng Wang,et al.  Polarization sensitive optical coherence microscopy for brain imaging. , 2016, Optics letters.

[66]  J. Mangin,et al.  New diffusion phantoms dedicated to the study and validation of high‐angular‐resolution diffusion imaging (HARDI) models , 2008, Magnetic resonance in medicine.

[67]  D G Gadian,et al.  Limitations and requirements of diffusion tensor fiber tracking: An assessment using simulations , 2002, Magnetic resonance in medicine.

[68]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[69]  Karla L Miller,et al.  Ex vivo diffusion MRI of the human brain: Technical challenges and recent advances , 2018, NMR in biomedicine.

[70]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[71]  Bennett A. Landman,et al.  Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI , 2016, NeuroImage.

[72]  Yogesh Rathi,et al.  High‐resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider‐SMS) , 2018, Magnetic resonance in medicine.

[73]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[74]  G. Sapiro,et al.  Reconstruction of the orientation distribution function in single‐ and multiple‐shell q‐ball imaging within constant solid angle , 2010, Magnetic resonance in medicine.

[75]  Sergei V. Gangnus,et al.  Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography. , 2006, Optics letters.