LRRTM3 Regulates Excitatory Synapse Development through Alternative Splicing and Neurexin Binding.

The four members of the LRRTM family (LRRTM1-4) are postsynaptic adhesion molecules essential for excitatory synapse development. They have also been implicated in neuropsychiatric diseases. Here, we focus on LRRTM3, showing that two distinct LRRTM3 variants generated by alternative splicing regulate LRRTM3 interaction with PSD-95, but not its excitatory synapse-promoting activity. Overexpression of either LRRTM3 variant increased excitatory synapse density in dentate gyrus (DG) granule neurons, whereas LRRTM3 knockdown decreased it. LRRTM3 also controlled activity-regulated AMPA receptor surface expression in an alternative splicing-dependent manner. Furthermore, Lrrtm3-knockout mice displayed specific alterations in excitatory synapse density, excitatory synaptic transmission and excitability in DG granule neurons but not in CA1 pyramidal neurons. Lastly, LRRTM3 required only specific splice variants of presynaptic neurexins for their synaptogenic activity. Collectively, our data highlight alternative splicing and differential presynaptic ligand utilization in the regulation of LRRTMs, revealing key regulatory mechanisms for excitatory synapse development.

[1]  R. Nicoll,et al.  Auxiliary Subunits Assist AMPA-Type Glutamate Receptors , 2006, Science.

[2]  T. Südhof,et al.  Membrane-Tethered Monomeric Neurexin LNS-Domain Triggers Synapse Formation , 2013, The Journal of Neuroscience.

[3]  Dongmin Lee,et al.  MDGAs interact selectively with neuroligin-2 but not other neuroligins to regulate inhibitory synapse development , 2012, Proceedings of the National Academy of Sciences.

[4]  R. Weinberg,et al.  NGL family PSD-95–interacting adhesion molecules regulate excitatory synapse formation , 2006, Nature Neuroscience.

[5]  M. Saarma,et al.  A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system. , 2003, Genomics.

[6]  H. Huttunen,et al.  LRRTM3 is dispensable for amyloid-β production in mice. , 2012, Journal of Alzheimer's disease : JAD.

[7]  Y. Fujiyoshi,et al.  An intracellular domain with a novel sequence regulates cell surface expression and synaptic clustering of leucine‐rich repeat transmembrane proteins in hippocampal neurons , 2015, Journal of neurochemistry.

[8]  J. Um,et al.  The balancing act of GABAergic synapse organizers. , 2015, Trends in molecular medicine.

[9]  T. Hashikawa,et al.  Impaired Cognitive Function and Altered Hippocampal Synapse Morphology in Mice Lacking Lrrtm1, a Gene Associated with Schizophrenia , 2011, PloS one.

[10]  J. Yates,et al.  LRRTM2 Interacts with Neurexin1 and Regulates Excitatory Synapse Formation , 2009, Neuron.

[11]  Jie-Oh Lee,et al.  Structural basis for LAR-RPTP/Slitrk complex-mediated synaptic adhesion , 2014, Nature Communications.

[12]  T. Südhof,et al.  The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo , 2011, Proceedings of the National Academy of Sciences.

[13]  B. Kaang,et al.  SALM Synaptic Cell Adhesion-like Molecules Regulate the Differentiation of Excitatory Synapses , 2006, Neuron.

[14]  K. Tabuchi,et al.  PTPσ functions as a presynaptic receptor for the glypican-4/LRRTM4 complex and is essential for excitatory synaptic transmission , 2015, Proceedings of the National Academy of Sciences.

[15]  Thomas C. Südhof,et al.  LRRTM2 Functions as a Neurexin Ligand in Promoting Excitatory Synapse Formation , 2009, Neuron.

[16]  S. Strittmatter,et al.  LRRTM1-deficient mice show a rare phenotype of avoiding small enclosures—A tentative mouse model for claustrophobia-like behaviour , 2013, Behavioural Brain Research.

[17]  J. Yates,et al.  Differences in AMPA and kainate receptor interactomes facilitate identification of AMPA receptor auxiliary subunit GSG1L. , 2012, Cell reports.

[18]  Gary D Bader,et al.  Functional impact of global rare copy number variation in autism spectrum disorders , 2010, Nature.

[19]  J. Ko The leucine-rich repeat superfamily of synaptic adhesion molecules: LRRTMs and Slitrks , 2012, Molecules and cells.

[20]  P. Scheiffele,et al.  SAM68 Regulates Neuronal Activity-Dependent Alternative Splicing of Neurexin-1 , 2011, Cell.

[21]  Lilia M. Iakoucheva,et al.  Whole-Genome Sequencing in Autism Identifies Hot Spots for De Novo Germline Mutation , 2012, Cell.

[22]  T. Südhof,et al.  Jcb: Article , 2022 .

[23]  Raika Pancaroglu,et al.  LRRTMs and Neuroligins Bind Neurexins with a Differential Code to Cooperate in Glutamate Synapse Development , 2010, The Journal of Neuroscience.

[24]  Eunjoon Kim,et al.  Organization of the Presynaptic Active Zone by ERC2/CAST1-Dependent Clustering of the Tandem PDZ Protein Syntenin-1 , 2006, The Journal of Neuroscience.

[25]  T. Südhof,et al.  Calsyntenins Function as Synaptogenic Adhesion Molecules in Concert with Neurexins. , 2024, Cell reports.

[26]  Uwe Schulte,et al.  High-Resolution Proteomics Unravel Architecture and Molecular Diversity of Native AMPA Receptor Complexes , 2012, Neuron.

[27]  Thomas C. Südhof,et al.  Presynaptic Neurexin-3 Alternative Splicing trans-Synaptically Controls Postsynaptic AMPA Receptor Trafficking , 2013, Cell.

[28]  T. Dresbach,et al.  Synaptic targeting of neuroligin is independent of neurexin and SAP90/PSD95 binding , 2004, Molecular and Cellular Neuroscience.

[29]  S. Strittmatter,et al.  An Unbiased Expression Screen for Synaptogenic Proteins Identifies the LRRTM Protein Family as Synaptic Organizers , 2009, Neuron.

[30]  T. Südhof,et al.  Synaptic cell adhesion. , 2012, Cold Spring Harbor perspectives in biology.

[31]  Ji Won Um,et al.  LAR-RPTPs: synaptic adhesion molecules that shape synapse development. , 2013, Trends in cell biology.

[32]  Ann Marie Craig,et al.  Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization , 2013, Trends in Neurosciences.

[33]  Steven A. Connor,et al.  An LRRTM4-HSPG Complex Mediates Excitatory Synapse Development on Dentate Gyrus Granule Cells , 2013, Neuron.

[34]  J. Yates,et al.  Unbiased Discovery of Glypican as a Receptor for LRRTM4 in Regulating Excitatory Synapse Development , 2013, Neuron.

[35]  Anirvan Ghosh,et al.  Control of neural circuit formation by leucine-rich repeat proteins , 2014, Trends in Neurosciences.

[36]  T. Südhof Neuroligins and neurexins link synaptic function to cognitive disease , 2008, Nature.

[37]  Eunjoon Kim,et al.  Slitrks control excitatory and inhibitory synapse formation with LAR receptor protein tyrosine phosphatases , 2013, Proceedings of the National Academy of Sciences.

[38]  T. Südhof,et al.  Leucine-Rich Repeat Transmembrane Proteins Are Essential for Maintenance of Long-Term Potentiation , 2013, Neuron.