Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries

It is expected that the market dominance of lithium-ion batteries will continue for at least another decade as there are currently no competing alternatives with the versatility of lithium-ion batteries for powering mobile and portable devices; and for buffering the fluctuating supply of intermittent energy sources such as wind and solar. While the pursuit of higher energy density and higher power density materials constitute the bulk of current interest, there is increasing interest in durable active battery materials that can be produced with minimum environmental impact. It is with these considerations that TiO2- and Sn-based anode materials are most interesting candidates for fulfilling future green energy storage materials. This review will focus on the recent developments of nanostructured TiO2 and Sn-based anode materials, including rutile, anatase, TiO2 (B), and coated TiO2, and pristine SnO2, and SnO2/C, Sn(M)/C composites.

[1]  T. Ohzuku,et al.  Electrochemistry of anatase titanium dioxide in lithium nonaqueous cells , 1985 .

[2]  P. Davies,et al.  The soft chemical synthesis of TiO2 (B) from layered titanates , 1992 .

[3]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[4]  Stashans,et al.  Theoretical study of lithium intercalation in rutile and anatase. , 1996, Physical review. B, Condensed matter.

[5]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[6]  G. Nuspl,et al.  Lithium intercalation in TiO2 modifications , 1997 .

[7]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[8]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[9]  Tohru Sekino,et al.  Titania Nanotubes Prepared by Chemical Processing , 1999 .

[10]  B. Scrosati,et al.  A High‐Rate, High‐Capacity, Nanostructured Tin Oxide Electrode , 1999 .

[11]  Zhaolin Liu,et al.  Lithium Intercalation and Deintercalation Reactions in Synthetic Graphite Containing a High Dispersion of SnO , 1999 .

[12]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[13]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[14]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[15]  T. Kitamura,et al.  Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2 , 2001 .

[16]  J. Goodenough,et al.  Nanocrystalline Lithium Manganese Oxide Spinel Cathode for Rechargeable Lithium Batteries , 2001 .

[17]  M. Wagemaker,et al.  Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study. , 2001, Journal of the American Chemical Society.

[18]  S. D. de Leeuw,et al.  Effect of diffusion on lithium intercalation in titanium dioxide. , 2001, Physical review letters.

[19]  Qing Chen,et al.  Trititanate nanotubes made via a single alkali treatment , 2002 .

[20]  Lianmao Peng,et al.  The structure of trititanate nanotubes. , 2002, Acta crystallographica. Section B, Structural science.

[21]  S. W. Leeuw,et al.  Density-functional simulations of lithium intercalation in rutile , 2002 .

[22]  Reinhard Nesper,et al.  Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. , 2002, Angewandte Chemie.

[23]  Seung M. Oh,et al.  Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. , 2003, Journal of the American Chemical Society.

[24]  S. W. Leeuw,et al.  Diffusion of Li-ions in rutile. An ab initio study , 2003 .

[25]  Yadong Li,et al.  Synthesis and characterization of ion-exchangeable titanate nanotubes. , 2003, Chemistry.

[26]  Yong Wang,et al.  Controlled Synthesis of V-shaped SnO2 Nanorods , 2004 .

[27]  Jaephil Cho,et al.  A mesoporous/crystalline composite material containing tin phosphate for use as the anode in lithium-ion batteries. , 2004, Angewandte Chemie.

[28]  Hua Chun Zeng,et al.  Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. , 2004, The journal of physical chemistry. B.

[29]  Jaephil Cho,et al.  Enhanced electrochemical properties of SnO2 anode by AlPO4 coating , 2004 .

[30]  J. Lee,et al.  Molten Salt Synthesis of Tin Oxide Nanorods: Morphological and Electrochemical Features , 2004 .

[31]  L. Kavan,et al.  Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth , 2004 .

[32]  T. Baumann,et al.  Electronic structure of titania aerogels from soft x-ray absorption spectroscopy , 2004 .

[33]  M. Winter,et al.  What are batteries, fuel cells, and supercapacitors? , 2004, Chemical reviews.

[34]  J. Lee,et al.  Tin Nanoparticle Loaded Graphite Anodes for Li-Ion Battery Applications , 2004 .

[35]  A. R. Armstrong,et al.  TiO2‐B Nanowires , 2004 .

[36]  B. Tu,et al.  Ordered, Nanostructured Tin‐Based Oxides/Carbon Composite as the Negative‐Electrode Material for Lithium‐Ion Batteries , 2004 .

[37]  Yong Wang,et al.  Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application , 2005 .

[38]  Huaiyong Zhu,et al.  Electrochemical performance of anatase nanotubes converted from protonated titanate hydrate nanotubes , 2005 .

[39]  Haoshen Zhou,et al.  Formation of nanotubes TiO2 from layered titanate particles by a soft chemical process , 2005 .

[40]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[41]  Min Gyu Kim,et al.  Monomer-Capped Tin Metal Nanoparticles for Anode Materials in Lithium Secondary Batteries , 2005 .

[42]  Zilong Tang,et al.  Preparation and Novel Lithium Intercalation Properties of Titanium Oxide Nanotubes , 2005 .

[43]  Peter G. Bruce,et al.  Lithium‐Ion Intercalation into TiO2‐B Nanowires , 2005 .

[44]  Xueping Gao,et al.  Titanate Nanotubes and Nanorods Prepared from Rutile Powder , 2005 .

[45]  J. Lee,et al.  Microwave-assisted synthesis of SnO2–graphite nanocomposites for Li-ion battery applications , 2005 .

[46]  Mijung Noh,et al.  Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery , 2005 .

[47]  Min Gyu Kim,et al.  Amorphous Carbon-Coated Tin Anode Material for Lithium Secondary Battery , 2005 .

[48]  J. Tarascon,et al.  Electrochemical lithium reactivity with nanotextured anatase-type TiO2 , 2005 .

[49]  D. Gournis,et al.  Supporting Information Carbon Nanotubes Encapsulating Superconducting Single- Crystalline Tin Nanowires , 2006 .

[50]  D. Bavykin,et al.  Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications , 2006 .

[51]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[52]  J. Lee,et al.  Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: Synthesis and performance in reversible Li-ion storage , 2006 .

[53]  Yu‐Guo Guo,et al.  Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. , 2006, Chemical communications.

[54]  P. Bruce,et al.  TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries , 2006 .

[55]  N. Nakashima,et al.  A Mesoporous Nanocomposite of TiO2 and Carbon Nanotubes as a High‐Rate Li‐Intercalation Electrode Material , 2006 .

[56]  J. Dahn,et al.  Combinatorial Study of Sn1 − x Co x ( 0 < x < 0.6 ) and [ Sn0.55Co0.45 ] 1 − y C y ( 0 < y < 0.5 ) Alloy Negative Electrode Materials for Li-Ion Batteries , 2006 .

[57]  Q. Wang,et al.  Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures. , 2006, Inorganic chemistry.

[58]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[59]  J. Lee,et al.  One-step, confined growth of bimetallic tin-antimony nanorods in carbon nanotubes grown in situ for reversible Li+ ion storage. , 2006, Angewandte Chemie.

[60]  Chunjoong Kim,et al.  Electrochemical Properties of Disordered-Carbon-Coated SnO2 Nanoparticles for Li Rechargeable Batteries , 2006 .

[61]  Yong Wang,et al.  Highly Reversible Lithium Storage in Porous SnO2 Nanotubes with Coaxially Grown Carbon Nanotube Overlayers , 2006 .

[62]  Jaephil Cho,et al.  SnO2 Filled Mesoporous Tin Phosphate High Capacity Negative Electrode for Lithium Secondary Battery , 2006 .

[63]  H. Teng,et al.  Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. , 2006, The journal of physical chemistry. B.

[64]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[65]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[66]  R. Li,et al.  Aligned Heterostructures of Single-Crystalline Tin Nanowires Encapsulated in Amorphous Carbon Nanotubes , 2007 .

[67]  C. M. Li,et al.  Novel porous anatase TiO2 nanorods and their high lithium electroactivity , 2007 .

[68]  Haoshen Zhou,et al.  Particle size dependence of the lithium storage capability and high rate performance of nanocrystalline anatase TiO2 electrode , 2007 .

[69]  Jaephil Cho,et al.  Sn(78)Ge(22)@carbon core-shell nanowires as fast and high-capacity lithium storage media. , 2007, Nano letters.

[70]  Xueping Gao,et al.  Electrochemical Lithium Storage of Titanate and Titania Nanotubes and Nanorods , 2007 .

[71]  J. Dahn,et al.  Mossbauer effect studies of sputter-deposited tin-cobalt and tin-cobalt-carbon alloys , 2007 .

[72]  L. Archer,et al.  Double‐Walled SnO2 Nano‐Cocoons with Movable Magnetic Cores , 2007 .

[73]  D. Deng,et al.  One-Step Synthesis of Polycrystalline Carbon Nanofibers with Periodic Dome-Shaped Interiors and Their Reversible Lithium-Ion Storage Properties , 2007 .

[74]  Haoshen Zhou,et al.  Nanocrystalline Rutile TiO2 Electrode for High-Capacity and High-Rate Lithium Storage , 2007 .

[75]  Jaephil Cho,et al.  Synthesis and electrochemical properties of Sn87Co13 alloys by NaBH4 and sodium naphthalenide reduction methods , 2007 .

[76]  Jaephil Cho,et al.  Reversible Lithium Intercalation in Teardrop‐Shaped Ultrafine SnP0.94 Particles: An Anode Material for Lithium‐Ion Batteries , 2007 .

[77]  Bruno Scrosati,et al.  Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion Batteries , 2007 .

[78]  B. Scrosati,et al.  Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling , 2007 .

[79]  Yangyang Shi,et al.  A Tin‐Based Amorphous Oxide Composite with a Porous, Spherical, Multideck‐Cage Morphology as a Highly Reversible Anode Material for Lithium‐Ion Batteries , 2007 .

[80]  Jaephil Cho,et al.  Spinel Li4Ti5O12 Nanowires for High-Rate Li-Ion Intercalation Electrode , 2007 .

[81]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[82]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[83]  Wei Zhang,et al.  Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .

[84]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[85]  D. Deng,et al.  Hollow Core–Shell Mesospheres of Crystalline SnO2 Nanoparticle Aggregates for High Capacity Li+ Ion Storage , 2008 .

[86]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[87]  Bruno Scrosati,et al.  A Nanostructured Sn–C Composite Lithium Battery Electrode with Unique Stability and High Electrochemical Performance , 2008 .

[88]  Jaephil Cho,et al.  Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials , 2008 .

[89]  Jiaguo Yu,et al.  Electrochemical properties of TiO2 hollow microspheres from a template-free and green wet-chemical route , 2008 .

[90]  M. Wagemaker,et al.  Impact of Nanosizing on Lithiated Rutile TiO2 , 2008 .

[91]  Weiguo Song,et al.  Tin‐Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High‐Performance Anode Material in Lithium‐Ion Batteries , 2008 .

[92]  Min Gyu Kim,et al.  Tio2@Sn core–shell nanotubes for fast and high density Li-ion storage material , 2008 .

[93]  H. Qiao,et al.  SnO2@C core-shell spheres: synthesis, characterization, and performance in reversible Li-ion storage , 2008 .

[94]  J. Leckie,et al.  Self-etching reconstruction of hierarchically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. , 2008, Journal of the American Chemical Society.

[95]  Jaephil Cho,et al.  High capacity carbon-coated Si70Sn30 nanoalloys for lithium battery anode material. , 2008, Chemical communications.

[96]  D. Deng,et al.  Reversible storage of lithium in a rambutan-like tin-carbon electrode. , 2009, Angewandte Chemie.