The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies

[1]  B. Fegley,et al.  The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions - Implications for chemical and physical processes in the solar nebula , 1986 .

[2]  A. Hofmann,et al.  Nb and Pb in oceanic basalts: new constraints on mantle evolution , 1986 .

[3]  H. Wänke,et al.  Chemical systematics of the shergotty meteorite and the composition of its parent body (Mars) , 1986 .

[4]  S. Hughes,et al.  Zr‐Hf‐Ta fractionation during lunar evolution , 1985 .

[5]  K. Nickel,et al.  CaAl ratio and composition of the Earth's upper mantle , 1985 .

[6]  P. Stille,et al.  Lu‐Hf and Sm‐Nd evolution in lunar mare basalts , 1984 .

[7]  M. Tatsumoto,et al.  Lu‐Hf constraints on the evolution of lunar basalts , 1984 .

[8]  A. Hofmann,et al.  K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle , 1983, Nature.

[9]  D. Clague,et al.  Geochemistry of diverse basalt types from Loihi Seamount, Hawaii: petrogenetic implications , 1983 .

[10]  F. Frey,et al.  Origin of Hawaiian tholeiite and alkalic basalt , 1983, Nature.

[11]  I. Roelandts,et al.  1982 Compilation of Elemental Concentrations in Eleven United States Geological Survey Rock Standards , 1983 .

[12]  H. Wanke,et al.  Experimental Investigation of Metal-Silicate Partitioning of Some Lithophile Elements (ta, mn, v, Cr) , 1983 .

[13]  G. Dreibus,et al.  Chemistry of Shergottites and the Shergotty Parent Body (spb): Further Evidence for the Two Component Model of Planet Formation , 1983 .

[14]  Mitsuru Ebihara,et al.  Solar-system abundances of the elements , 1982 .

[15]  S. R. Taylor Lunar and terrestrial crusts: a constrast in origin and evolution , 1982 .

[16]  H. Knab The distribution of trace elements in carbonaceous chondrites , 1981 .

[17]  P. Patchett,et al.  Lu/hf in Chondrites and Definition of a Chondritic Hafnium Growth Curve , 1981 .

[18]  J. Joron,et al.  The primordial chondritic nature and large-scale heterogeneities in the mantle: evidence from high and low partition coefficient elements in oceanic basalts , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  H. Hintenberger,et al.  Simultaneous determination of 20 trace elements in geologic samples by the isotope dilution method combined with spark source mass spectrography , 1980 .

[20]  D. Wood,et al.  Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor , 1979 .

[21]  W. White,et al.  The petrology and geochemistry of the Azores Islands , 1979 .

[22]  J. Pearce,et al.  Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks , 1979 .

[23]  M. Shima The abundances of titanium, zirconium and hafnium in stony meteorites , 1979 .

[24]  G. Dreibus,et al.  THE ABUNDANCES OF MAJOR, MINOR, AND TRACE ELEMENTS IN THE EARTH'S MANTLE AS DERIVED FROM PRIMITIVE ULTRAMAFIC NODULES. , 1979 .

[25]  P. Hamilton,et al.  Rare-earth abundances in chondritic meteorites , 1978 .

[26]  L. Grossman,et al.  The abundances of zirconium and hafnium in the solar system , 1976 .

[27]  H. Palme,et al.  Lunar Differentiation Processes as Deduced From Trace Element Abundances , 1975 .

[28]  L. Grossman,et al.  Early chemical history of the solar system , 1974 .

[29]  B. Mason,et al.  Niobium in meteorites , 1972 .

[30]  E. Whittaker,et al.  Ionic radii for use in geochemistry , 1970 .

[31]  K. Maurer,et al.  Über den Ionennachweis mit Photoplatten , 1966 .

[32]  S. Taylor Trace element abundances and the chondritic Earth model , 1964 .

[33]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[34]  G. Dreibus,et al.  Geochemical evidence for the formation of the Moon by impact induced fission of the proto-Earth , 1984 .

[35]  H. Puchelt,et al.  Petrogenetic implications of tholeiitic basalt glasses from the East Pacific Rise and the Galápagos Spreading Center , 1983 .

[36]  P. J. Patchett,et al.  Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution , 1983 .

[37]  H. Palme,et al.  The significance of W in planetary differentiation processes: evidence from new data on eucrites. , 1982 .

[38]  K. Jochum,et al.  Quantitative multielement analysis of geochemical and cosmochemical samples using spark source mass spectrometry , 1981 .

[39]  A. D. Saunders,et al.  Geochemistry of basalts drilled in the North Atlantic by IPOD Leg 49: Implications for mantle heterogeneity , 1979 .

[40]  W. D. Ehmann,et al.  The distribution of zirconium and hafnium in terrestrial rocks, meteorites and the moon , 1979 .

[41]  G. Dreibus,et al.  New data on the chemistry of lunar samples - Primary matter in the lunar highlands and the bulk composition of the moon , 1975 .

[42]  W. D. Ehmann,et al.  Chemical studies of the lunar regolith with emphasis on zirconium and hafnium , 1975 .

[43]  H. Palme Zerstörungsfreie Bestimmung Einiger Spurenelemente in Mond- und Meteoritenproben mit 14 MeV-Neutronen , 1974 .

[44]  E. Anders,et al.  Bulk compositions of the moon and earth, estimated from meteorites , 1974 .

[45]  J. P. Willis,et al.  Inter-Element Relationships Between the Moon and Stony Meteorites with Particular Reference to Some Refractory Elements , 1972 .

[46]  L. Ahrens Origin and distribution of the elements , 1968 .

[47]  E. Anders,et al.  CHEMICAL FRACTIONATIONS IN METEORITES. II. ABUNDANCE PATTERNS AND THEIR INTERPRETATION. , 1967 .

[48]  W. D. Ehmann ON SOME TANTALUM ABUNDANCES IN METEORITES AND TEKTITES , 1965 .

[49]  R. Schmitt,et al.  Rare-earth, yttrium and scandium abundances in meteoritic and terrestrial matter—II , 1964 .

[50]  A. A. Smales,et al.  The determination of tantalum and tungsten in rocks and meteorites by neutron activation analysis , 1960 .