Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate

Abstract Due to its physical, chemical and mechanical properties, the waste inevitably generated by the ceramic sanitary ware industry can be used in the production of concrete. This article reports the possibility of substituting 15%, 20% and 25% of natural coarse aggregate with recycled ceramic coarse aggregate, and presents an analysis of the resultant effects on the morphology and microstructure of recycled concretes, and consequently, on the mechanical behaviour of these ecoefficient concretes. The results demonstrate that ceramic waste does not interfere in either the hydration process or in the morphology of the hydrated products. The microstructure present in the interfacial transition zone (ITZ) of the recycled aggregate–paste is more compact and stable than that of the natural aggregate–paste. As regards mechanical behaviour, it was observed that as the percentage of substitution rose, the compressive strength of these concretes improved.

[1]  H. Alanyali,et al.  Concrete Produced by Steel‐Making Slag (Basic Oxygen Furnace) Addition in Portland Cement , 2009 .

[2]  A. J. Valdés,et al.  Re-use of construction and demolition residues and industrial wastes for the elaboration or recycled eco-efficient concretes , 2010 .

[3]  Y. Guney,et al.  Utilization of Ceramic Wastes in the Construction Sector , 2004 .

[4]  Qiang Du,et al.  Concrete with recycled concrete aggregate and crushed clay bricks , 2011 .

[5]  Rosário Veiga,et al.  Fine ceramics replacing cement in mortars Partial replacement of cement with fine ceramics in rendering mortars , 2008 .

[6]  P. K. Mehta,et al.  Concrete: Microstructure, Properties, and Materials , 2005 .

[7]  Osamu Takahashi,et al.  Compressive strength and resistance to chloride penetration of mortars using ceramic waste as fine aggregate , 2012 .

[8]  J. M. Gómez-Soberón Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study , 2002 .

[9]  M. Frías,et al.  Properties and Performances of Concrete Tiles Containing Waste Fired Clay Materials , 2007 .

[10]  P. Hewlett,et al.  Lea's chemistry of cement and concrete , 2001 .

[11]  K. Tsukamoto,et al.  In-situ observation of ettringite crystals , 2009 .

[12]  Marios Soutsos Concrete Durability: A Practical Guide to the Design of Durable Concrete Structures , 2009 .

[13]  Hanifi Binici,et al.  Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties , 2007 .

[14]  Karen Scrivener,et al.  Delayed ettringite formation , 2001 .

[15]  S. Kenai,et al.  The use of coarse and fine crushed bricks as aggregate in concrete , 2008 .

[16]  F. P. Marín,et al.  Investigación sobre la actividad puzolanica de materiales de desecho procedentes de arcilla cocida , 2001 .

[17]  Eric Wirquin,et al.  Assessment of the Surface Permeation Properties of Recycled Aggregate Concrete , 2003 .

[18]  Jorge de Brito,et al.  Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: durability performance , 2009 .

[19]  P. Devadas Manoharan,et al.  Concrete with ceramic waste aggregate , 2005 .

[20]  M. Frías,et al.  Properties of Calcined Clay Waste and its Influence on Blended Cement Behavior , 2008 .

[21]  S. Diamond The microstructure of cement paste and concrete - a visual primer , 2004 .

[22]  M. Frías,et al.  Morphology and Properties in Blended Cements with Ceramic Wastes as a Pozzolanic Material , 2006 .

[23]  P. Cachim Mechanical properties of brick aggregate concrete , 2009 .

[24]  P. Devadas Manoharan,et al.  Concrete made from ceramic industry waste: Durability properties , 2011 .

[25]  Chi Sun Poon,et al.  Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete , 2011 .

[26]  María Isabel Sánchez de Rojas,et al.  Viabilidad de utilización de materiales de desecho procedentes de productos cerámicos en prefabricados de hormigón , 2001 .

[27]  B. Llamas,et al.  Eco-efficient concretes: the effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete. , 2009, Waste management.

[28]  K. Day,et al.  Aggregates for concrete , 2013 .

[29]  Fernando Pacheco-Torgal,et al.  Reusing ceramic wastes in concrete , 2010 .

[30]  S. Diamond Delayed ettringite formation — Processes and problems , 1996 .

[31]  F. P. Marín,et al.  Decay of pavement mortar due to thaumasite formation , 2009 .

[32]  B. Baradan,et al.  Effect of ettringite morphology on DEF-related expansion , 2010 .

[33]  J. de Brito,et al.  Effects on concrete durability of using recycled ceramic aggregates , 2005 .

[34]  P. Monteiro,et al.  X‐ray Diffraction Investigations of Microstructure of Calcium Hydroxide Crystallites in the Interfacial Transition Zone of Concrete , 2003 .

[35]  J. Ayuso,et al.  Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete , 2011 .

[36]  Francisco Soria Santamaría Las puzolanas y el ahorro energético en los materiales de construcción , 1983 .

[37]  J. de Brito,et al.  Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates , 2005 .

[38]  Rosário Veiga,et al.  Incorporation of fine ceramics in mortars , 2009 .

[39]  Francisca Puertas,et al.  Residuos cerámicos para su posible uso como materia prima en la fabricación de clínker de cemento Portland : Caracterización y activación alcalina , 2006 .

[40]  F. Bektaş,et al.  Effects of crushed clay brick aggregate on mortar durability , 2009 .

[41]  Fernando Pacheco-Torgal,et al.  Compressive strength and durability properties of ceramic wastes based concrete , 2011 .

[42]  K. Aligizaki Pore Structure of Cement-Based Materials: Testing, Interpretation and Requirements , 2005 .