Aluminum as anode for energy storage and conversion: a review

Aluminum has long attracted attention as a potential battery anode because of its high theoretical voltage and specific energy. The protective oxide layer on the aluminum surface is however detrimental to the battery performance, contributing to failure to achieve the reversible potential and causing the delayed activation of the anode. By developing aluminum alloys as anodes and solution additives to electrolytes, a variety of aluminum batteries have been extensively investigated for various applications. From molten salt and other non-aqueous electrolytes, aluminum can be electrodeposited and therefore be suitable for developing rechargable batteries. Considerable efforts have been made to develop secondary aluminum batteries of high power density. In the present paper, these research activities are reviewed, including aqueous electrolyte primary batteries, aluminum-air batteries and molten salt secondary batteries.

[1]  H. A. Hjuler,et al.  Electrochemical Deposition and Dissolution of Aluminum in NaAlCl4 Melts Influence of and Sulfide Addition , 1990 .

[2]  R. Dillon,et al.  The Low Current Domain of the Aluminum/Sulfur Battery , 1997 .

[3]  T. Våland,et al.  The influence of sn on the electrochemical behaviour of A1 , 1977 .

[4]  C. Tuck,et al.  A high capacity aluminum-silver oxide battery , 1992, IEEE 35th International Power Sources Symposium.

[5]  N. Cahoon,et al.  A Heavy Duty Chlorine‐Depolarized Cell , 1948 .

[6]  G. Holleck The reduction of chlorine on carbon in AlCl3-KCl-NaCl melts. , 1972 .

[7]  C. Marsh,et al.  A Novel Aqueous Dual‐Channel Aluminum‐Hydrogen Peroxide Battery , 1994 .

[8]  T. Vandernoot,et al.  Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts , 1997 .

[9]  K. Schulze,et al.  Electrode kinetics of aluminium in chloride melts with respect to electrocrystallization , 1972 .

[10]  N. Takami,et al.  Studies on the electrochemical behaviour of the FeS2 electrode in molten AlCl3NaCl by the AC impedance method , 1988 .

[11]  P. Fellner,et al.  Electrolytic aluminium plating in molten salt mixtures based on AlCl3 I: Influence of the addition of tetramethylammonium chloride , 1981 .

[12]  S. Licht,et al.  Novel Aqueous Aluminum/Sulfur Batteries , 1993 .

[13]  O. Haas,et al.  Aluminium alloys in sulfuric acid Part II: Aluminium-oxygen cells , 1996 .

[14]  N. Bjerrum,et al.  Phase diagram of the NaCl-AlCl3 system near equimolar composition, with determination of the cryoscopic constant, the enthalpy of melting, and oxide contaminations , 1984 .

[15]  Development of NiZn cells , 1991 .

[16]  R. Piontelli,et al.  Overvoltages and Passivity in Melted Electrolytes , 1956 .

[17]  M. J. Pryor,et al.  Galvanic Corrosion Characteristics of Aluminum Alloyed with Group IV Metals , 1967 .

[18]  J. J. Auborn,et al.  An Ambient Temperature Secondary Aluminum Electrode: Its Cycling Rates and Its Cycling Efficiencies , 1985 .

[19]  J. Pereira‐Ramos,et al.  A thermodynamic study of electrochemical lithium insertion into vanadium pentoxide , 1988 .

[20]  R. Messina,et al.  Behaviour of aluminium as anode in dimethylsulfone-based electrolytes , 1994 .

[21]  S. Zecevic,et al.  Transition metal catalysts for porous carbon air-electrodes in neutral chloride electrolytes , 1983 .

[22]  N. Koura,et al.  A rotating ring-disk study of the Al electrode in molten AlCl3+NaCl+KCl electrolytes , 1985 .

[23]  N. Bjerrum,et al.  Mechanism of Reaction in NaAlCl 4 Molten Salt Batteries with Nickel Felt Cathodes and Aluminum Anodes . Part I : Modelling of the Battery Properties at Thermodynamic Equilibrium , 2005 .

[24]  Solomon Zaromb,et al.  The Use and Behavior of Aluminum Anodes in Alkaline Primary Batteries , 1962 .

[25]  K. Schulze,et al.  Austauschstromdichte und komplexbildung von aluminium in alkalitetrachloroaluminaten , 1972 .

[26]  J. R. Hill,et al.  Aluminum-hydrogen peroxide power system for an unmanned underwater vehicle , 1993, Proceedings of OCEANS '93.

[27]  R. Messina,et al.  Electrodeposition Studies of Aluminum on Tungsten Electrode from DMSO 2 Electrolytes Determination of AlIII Species Diffusion Coefficients , 1994 .

[28]  O. Haas,et al.  Electrochemical Properties of Aluminum in Weakly Acidic Sodium Chloride Solutions II . Influence of the Electrolyte Additives Hg2+, In3+, Ga3+, and Sn2+ , 1992 .

[29]  J. Poignet,et al.  Electrochemical study of aluminium ion reduction in acidic AlCl3-n-butyl-pyridinium chloride melts , 1987 .

[30]  B. Nayak,et al.  The electrodeposition of aluminium on brass from a molten aluminium chloride-sodium chloride bath , 1977 .

[31]  N. Bjerrum,et al.  Mechanism of Reaction in NaAlCl4 Molten Salt Batteries with Nickel Felt Cathodes and Aluminum Anodes. Part II: Experimental Results and Comparison with Model Calculations. , 1993 .

[32]  S. Licht A novel aqueous aluminum|permanganate fuel cell , 1999 .

[33]  R. Dillon,et al.  Investigation of a novel aqueous aluminum/sulfur battery , 1993 .

[34]  P. Gifford,et al.  A Substituted Imidazolium Chloroaluminate Molten Salt Possessing an Increased Electrochemical Window , 1987 .

[35]  Richard C. Alkire,et al.  Advances in electrochemical science and engineering , 1990 .

[36]  N. Takami,et al.  Electrochemical Behavior of FeS2 Cathodes for Aluminum Secondary Cells around 100°C , 1993 .

[37]  J. Weaving,et al.  Experimental studies of transition metal chloride electrodes in undivided cells using molten NaAlCl4 electrolyte , 1991 .

[38]  A. Despić,et al.  Processes on aluminium on the negative side of the open-circuit potential , 1990 .

[39]  U. Landau,et al.  The Principles and Techniques of Electrolytic Aluminum Deposition and Dissolution in Organoaluminum Electrolytes , 1993 .

[40]  Nils Størkersen,et al.  The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle , 1999 .

[41]  M. A. Kulandainathan,et al.  Studies on the best alkaline electrolyte for aluminium/air batteries , 1992 .

[42]  G. F. Reynolds,et al.  Primary and secondary room temperature molten salt electrochemical cells , 1985 .

[43]  N. Bjerrum,et al.  NEGATIVE OXIDATION STATES OF THE CHALCOGENS IN MOLTEN SALTS. 1. RAMAN SPECTROSCOPIC STUDIES ON ALUMINUM CHLOROSULFIDES FORMED IN CHLORIDE AND CHLOROALUMINATE MELTS AND SOME RELATED SOLID AND DISSOLVED COMPOUNDS , 1980 .

[44]  A. Silny,et al.  Electrolytic aluminium plating in molten salt mixtures based on AlCl3 II: Influences of the application of the pulsed current and of a copper underlayer , 1982 .

[45]  R. Mears,et al.  Light Metals for the Cathodic Protection of Steel Structures , 1945 .

[46]  G. Stafford The Electrodeposition of an Aluminum‐Manganese Metallic Glass from Molten Salts , 1989 .

[47]  N. Ciković,et al.  Electrochemical properties of aluminium alloys containing indium, gallium and thallium , 1976 .

[48]  S. Licht,et al.  Disproportionation of Aqueous Sulfur and Sulfide: Kinetics of Polysulfide Decomposition , 1997 .

[49]  G. Mamantov,et al.  Electroanalytical Chemistry in Molten Salts—A Review of Recent Developments , 1973 .

[50]  M. Medeiros,et al.  Enhanced electrochemical performance in the development of the aluminum/hydrogen peroxide semi-fuel cell , 1997 .

[51]  S. Licht,et al.  A High Energy and Power Novel Aluminum/Nickel Battery , 1995 .

[52]  N. Bjerrum,et al.  Chloro Complexes in Molten Salts. 8. Potentiometric and Raman Spectroscopic Study of the Systems NaCl-AlCl3, NaCl-AlCl3-Na2O, NaCl-AlCl3-SeCl4, and NaCl-AlCl3-SeCl4-Na2O at 175oC , 1981 .

[53]  W. Boehnstedt The influence of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions , 1980 .

[54]  D. Collins,et al.  Power Sources 3 , 1971 .

[55]  N. Koura A Preliminary Investigation for an Al / AlCl3 ‐ NaCl / FeS2 Secondary Cell , 1980 .

[56]  C. Hussey,et al.  Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis , 1982 .

[57]  C. R. Boston Molten Salt Chemistry of the Haloaluminates , 1971 .

[58]  N. Bjerrum,et al.  Influence of Substrates on the Electrochemical Deposition and Dissolution of Aluminum in NaAlCl4 Melts. , 1991 .

[59]  S. Mancini,et al.  Secondary aluminium-iron (III) chloride batteries with a low temperature molten salt electrolyte , 1992 .

[60]  O. Haas,et al.  Aluminium alloys in sulphuric acid Part I: Electrochemical behaviour of rotating and stationary disc electrodes , 1993 .

[61]  R. A. Osteryoung,et al.  The Electrochemical Behavior of Aluminum in the Low Temperature Molten Salt System n Butyl Pyridinium Chloride: Aluminum Chloride and Mixtures of This Molten Salt with Benzene , 1980 .

[62]  S. Licht,et al.  Aluminum Anodic Behavior in Aqueous Sulfur Electrolytes , 1997 .

[63]  S. Licht,et al.  A Solid Sulfur Cathode for Aqueous Batteries , 1993, Science.

[64]  N. Bjerrum,et al.  Chloro complexes in molten salts. 6. Potentiometric and vapor pressure study of the system potassium chloride-aluminum chloride in the temperature range 275-350.degree.C , 1979 .

[65]  G. Mamantov,et al.  Acid-base properties of the systems aluminum chloride-metal chloride (metal = lithium, sodium, potassium, cesium) , 1972 .

[66]  A. Mihajlović,et al.  The effect of small additions of indium and thallium on the corrosion behaviour of aluminium in sea water , 1984 .

[67]  P. Gifford,et al.  An Aluminum/Chlorine Rechargeable Cell Employing a Room Temperature Molten Salt Electrolyte , 1988 .

[68]  N. Bjerrum,et al.  Density of molten sodium tetrachloroaluminate. A reinvestigation , 1983 .

[69]  R. J. Gale,et al.  Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures , 1979 .

[70]  J. O'm. Bockris,et al.  The Mechanism of the Dendritic Electrocrystallization of Zinc , 1969 .

[71]  S. Guthrie SIGNALS FOR DEVELOPING SYNAPSES , 1986 .

[72]  S. Zaromb,et al.  Control of Al Corrosion in Caustic Solutions , 1963 .

[73]  S. Licht Aluminum/Sulfur Battery Discharge in the High Current Domain , 1997 .

[74]  R. Hamlen,et al.  Multimode battery (marine system applications) , 1990, Symposium on Autonomous Underwater Vehicle Technology.

[75]  M. J. Pryor,et al.  The Influence of Ternary Alloying Additions on the Galvanic Behavior of Aluminum‐Tin Alloys , 1969 .

[76]  M. A. Kulandainathan,et al.  Characterisation of different grades of commercially pure aluminium as prospective galvanic anodes in saline and alkaline battery electrolyte , 1989 .

[77]  R. Durand,et al.  Characterization of different grades of aluminum anodes for aluminum/air batteries , 1997 .

[78]  M. Barak,et al.  Power Sources 4 , 1974 .

[79]  H. A. Hjuler,et al.  Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes , 1993 .

[80]  A. P. Karpinski,et al.  Silver based batteries for high power applications , 2000 .

[81]  J. Ulstrup,et al.  Some Problems Concerning Aluminium Electro-plating in Molten Salts. , 1980 .

[82]  C. Marsh,et al.  A Novel Aqueous Aluminum/Ferricyanide Battery , 1992 .

[83]  N. Bjerrum,et al.  Specific conductivity of sodium chloride-aluminum chloride and sodium chloride-aluminum chloride-aluminum sulfide (NaCl-AlCl3-Al2S3) melts , 1985 .

[84]  David Linden,et al.  Handbook of batteries and fuel cells , 1984 .

[85]  A. Despić,et al.  Abnormal yields of hydrogen and the mechanism of its evolution during cathodic polarization of aluminium , 1990 .

[86]  T. Brousse,et al.  Aluminum negative electrode in lithium ion batteries , 2001 .

[87]  V. Jović,et al.  Aluminium electrodeposition from AlCl3-NaCl melts on glassy carbon, platinum and gold electrodes , 1989 .

[88]  G. Mamantov,et al.  Electrochemical Reduction of Al2Cl7 − Ions in Chloroaluminate Melts , 1976 .

[89]  D. Harrington,et al.  Evaluation of Alloy Anodes for Aluminum-Air Batteries: Corrosion Studies , 1988 .

[90]  L. A. King,et al.  Deposition and Dissolution of Lithium‐Aluminum Alloy and Aluminum from Chloride‐Saturated LiCl ‐ AlCl3 and NaCl ‐ AlCl3 Melts , 1981 .

[91]  S. Ganesh,et al.  Heat management in aluminium/air batteries: sources of heat , 1994 .