Transition delay in a boundary layer flow using active control

Abstract Active linear control is applied to delay the onset of laminar–turbulent transition in the boundary layer over a flat plate. The analysis is carried out by numerical simulations of the nonlinear, transitional regime. A three-dimensional, localized initial condition triggering Tollmien–Schlichting waves of finite amplitude is used to numerically simulate the transition to turbulence. Linear quadratic Gaussian controllers based on reduced-order models of the linearized Navier–Stokes equations are designed, where the wall sensors and the actuators are localized in space. A parametric analysis is carried out in the nonlinear regime, for different disturbance amplitudes, by investigating the effects of the actuation on the flow due to different distributions of the localized actuators along the spanwise direction, different sizes of the actuators and the effort of the controllers. We identify the range of parameters where the controllers are effective and highlight the limits of the device for high amplitudes and strong control action. Despite the fully linear control approach, it is shown that the device is effective in delaying the onset of laminar–turbulent transition in the presence of packets characterized by amplitudes $a\approx 1\hspace{0.167em} \% $ of the free stream velocity at the actuator location. Up to these amplitudes, it is found that a proper choice of the actuators positively affects the performance of the controller. For a transitional case, $a\approx 0. 20\hspace{0.167em} \% $ , we show a transition delay of $\Delta {\mathit{Re}}_{x} = 3. 0\times 1{0}^{5} $ .

[1]  P. Meliga,et al.  Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach , 2010 .

[2]  Yong Li,et al.  Active control of boundary-layer instabilities , 2006, Journal of Fluid Mechanics.

[3]  Dan S. Henningson,et al.  The Fringe Region Technique and the Fourier Method Used in the Direct Numerical Simulation of Spatially Evolving Viscous Flows , 1999, SIAM J. Sci. Comput..

[4]  Dan S. Henningson,et al.  Feedback control of instabilities in the two-dimensional Blasius boundary layer : The role of sensors and actuators , 2013 .

[5]  Y S J O S H I,et al.  A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow , 1997 .

[6]  D. Henningson,et al.  Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes , 2007, Journal of Fluid Mechanics.

[7]  D. S. Henningson,et al.  Transition delay using control theory , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Peter J. Schmid,et al.  Closed-loop control of an open cavity flow using reduced-order models , 2009, Journal of Fluid Mechanics.

[9]  Peter J. Schmid,et al.  A physics-based approach to flow control using system identification , 2012, Journal of Fluid Mechanics.

[10]  Clarence W. Rowley,et al.  Reduced-order models for control of fluids using the eigensystem realization algorithm , 2008, 0907.1907.

[11]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[12]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[13]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[14]  C.W. Rowley,et al.  Model-based control and estimation of cavity flow oscillations , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[15]  Thomas Bewley,et al.  Optimal and robust control and estimation of linear paths to transition , 1998, Journal of Fluid Mechanics.

[16]  L. Ljung,et al.  Control theory : multivariable and nonlinear methods , 2000 .

[17]  D. Henningson,et al.  On the breakdown of boundary layer streaks , 2001, Journal of Fluid Mechanics.

[18]  P. Schmid,et al.  Stability and Transition in Shear Flows. By P. J. SCHMID & D. S. HENNINGSON. Springer, 2001. 556 pp. ISBN 0-387-98985-4. £ 59.50 or $79.95 , 2000, Journal of Fluid Mechanics.

[19]  D. Henningson,et al.  Feedback control of three-dimensional optimal disturbances using reduced-order models , 2011, Journal of Fluid Mechanics.

[20]  Dan S. Henningson,et al.  DNS AND LES OF ESTIMATION AND CONTROL OF TRANSITION IN BOUNDARY LAYERS SUBJECT TO FREE-STREAM TURBULENCE , 2008, Proceeding of Fifth International Symposium on Turbulence and Shear Flow Phenomena.

[21]  Cameron Tropea,et al.  Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators , 2008 .

[22]  T. Schneider,et al.  A Linear Systems Approach to Flow Control , 2007 .

[23]  B. Anderson,et al.  Controller Reduction: Concepts and Approaches , 1987, 1987 American Control Conference.

[24]  W. Nitsche,et al.  Active cancellation of Tollmien–Schlichting instabilities on a wing using multi-channel sensor actuator systems , 2003 .

[25]  Yury S. Kachanov,et al.  PHYSICAL MECHANISMS OF LAMINAR-BOUNDARY-LAYER TRANSITION , 1994 .

[26]  Sanjay S. Joshi,et al.  A systems theory approach to the feedback stabilization of infinitesimal and finite-amplitude disturbances in plane Poiseuille flow , 1997, Journal of Fluid Mechanics.

[27]  D. Henningson,et al.  A mechanism for bypass transition from localized disturbances in wall-bounded shear flows , 1993, Journal of Fluid Mechanics.

[28]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[29]  Denis Sipp,et al.  Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer , 2011, Journal of Fluid Mechanics.

[30]  Jochen Kriegseis,et al.  Performance Characterization and Quantification of Dielectric Barrier Discharge Plasma Actuators , 2011 .

[31]  Fredrik Lundell,et al.  Reactive control of transition induced by free-stream turbulence: an experimental demonstration , 2007, Journal of Fluid Mechanics.

[32]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[33]  Dan S. Henningson,et al.  SIMSON : A Pseudo-Spectral Solver for Incompressible Boundary Layer Flows , 2007 .

[34]  N. So On the breakdown of boundary layer streaks , 2022 .

[35]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[36]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[37]  Thomas Bewley,et al.  A Linear Systems Approach to Flow Control , 2007 .

[38]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[39]  D. Henningson,et al.  Optimal disturbances and bypass transition in boundary layers , 1999 .

[40]  C. Rowley,et al.  Modeling of transitional channel flow using balanced proper orthogonal decomposition , 2007, 0707.4112.

[41]  Dan S. Henningson,et al.  Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers , 2010, Journal of Fluid Mechanics.

[42]  P. Schmid Nonmodal Stability Theory , 2007 .

[43]  Dan S. Henningson,et al.  Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows , 2009 .

[44]  D. Henningson,et al.  Input–output analysis, model reduction and control of the flat-plate boundary layer , 2009, Journal of Fluid Mechanics.

[45]  Leonhard Kleiser,et al.  LES of transitional flows using the approximate deconvolution model , 2004 .

[46]  Peter J. Schmid,et al.  Control of amplifier flows using subspace identification techniques , 2013, Journal of Fluid Mechanics.

[47]  Jason L. Speyer,et al.  Robust reduced-order control of turbulent channel flows via distributed sensors and actuators , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).