Successor Features Combine Elements of Model-Free and Model-based Reinforcement Learning

A key question in reinforcement learning is how an intelligent agent can generalize knowledge across different inputs. By generalizing across different inputs, information learned for one input can be immediately reused for improving predictions for another input. Reusing information allows an agent to compute an optimal decision-making strategy using less data. State representation is a key element of the generalization process, compressing a high-dimensional input space into a low-dimensional latent state space. This article analyzes properties of different latent state spaces, leading to new connections between model-based and model-free reinforcement learning. Successor features, which predict frequencies of future observations, form a link between model-based and model-free learning: Learning to predict future expected reward outcomes, a key characteristic of model-based agents, is equivalent to learning successor features. Learning successor features is a form of temporal difference learning and is equivalent to learning to predict a single policy's utility, which is a characteristic of model-free agents. Drawing on the connection between model-based reinforcement learning and successor features, we demonstrate that representations that are predictive of future reward outcomes generalize across variations in both transitions and rewards. This result extends previous work on successor features, which is constrained to fixed transitions and assumes re-learning of the transferred state representation.

[1]  Yishay Mansour,et al.  Approximate Equivalence of Markov Decision Processes , 2003, COLT.

[2]  Richard S. Sutton,et al.  Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming , 1990, ML.

[3]  Alborz Geramifard,et al.  Dyna-Style Planning with Linear Function Approximation and Prioritized Sweeping , 2008, UAI.

[4]  Thomas J. Walsh,et al.  Towards a Unified Theory of State Abstraction for MDPs , 2006, AI&M.

[5]  Ameet Talwalkar,et al.  Foundations of Machine Learning , 2012, Adaptive computation and machine learning.

[6]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[7]  Doina Precup,et al.  Representation Discovery for MDPs Using Bisimulation Metrics , 2015, AAAI.

[8]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[9]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[10]  Andrew W. Moore,et al.  Generalization in Reinforcement Learning: Safely Approximating the Value Function , 1994, NIPS.

[11]  Samuel Gershman,et al.  Predictive representations can link model-based reinforcement learning to model-free mechanisms , 2017, bioRxiv.

[12]  Benjamin Van Roy,et al.  (More) Efficient Reinforcement Learning via Posterior Sampling , 2013, NIPS.

[13]  Michael L. Littman,et al.  Near Optimal Behavior via Approximate State Abstraction , 2016, ICML.

[14]  E. M. Wright,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[15]  Michael L. Littman,et al.  Reward-predictive representations generalize across tasks in reinforcement learning , 2019, bioRxiv.

[16]  Rémi Munos,et al.  Minimax Regret Bounds for Reinforcement Learning , 2017, ICML.

[17]  M. Botvinick,et al.  The hippocampus as a predictive map , 2016 .

[18]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control 3rd Edition, Volume II , 2010 .

[19]  Tom Schaul,et al.  Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement , 2018, ICML.

[20]  Peter Auer,et al.  Near-optimal Regret Bounds for Reinforcement Learning , 2008, J. Mach. Learn. Res..

[21]  Lawrence Carin,et al.  Linear Feature Encoding for Reinforcement Learning , 2016, NIPS.

[22]  Wolfram Burgard,et al.  Deep reinforcement learning with successor features for navigation across similar environments , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[23]  Richard S. Sutton,et al.  Generalization in ReinforcementLearning : Successful Examples UsingSparse Coarse , 1996 .

[24]  Sergey Levine,et al.  Learning Robust Rewards with Adversarial Inverse Reinforcement Learning , 2017, ICLR 2017.

[25]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[26]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[27]  Lihong Li,et al.  An analysis of linear models, linear value-function approximation, and feature selection for reinforcement learning , 2008, ICML '08.

[28]  George Konidaris,et al.  Value Function Approximation in Reinforcement Learning Using the Fourier Basis , 2011, AAAI.

[29]  Satinder Singh,et al.  Value Prediction Network , 2017, NIPS.

[30]  Marc G. Bellemare,et al.  The Arcade Learning Environment: An Evaluation Platform for General Agents , 2012, J. Artif. Intell. Res..

[31]  Tom Schaul,et al.  The Predictron: End-To-End Learning and Planning , 2016, ICML.

[32]  Tom Schaul,et al.  Successor Features for Transfer in Reinforcement Learning , 2016, NIPS.

[33]  Ronen I. Brafman,et al.  R-MAX - A General Polynomial Time Algorithm for Near-Optimal Reinforcement Learning , 2001, J. Mach. Learn. Res..

[34]  Robert Givan,et al.  Equivalence notions and model minimization in Markov decision processes , 2003, Artif. Intell..

[35]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[36]  Doina Precup,et al.  Bisimulation Metrics for Continuous Markov Decision Processes , 2011, SIAM J. Comput..

[37]  Marc G. Bellemare,et al.  DeepMDP: Learning Continuous Latent Space Models for Representation Learning , 2019, ICML.

[38]  M. Botvinick,et al.  The successor representation in human reinforcement learning , 2016, Nature Human Behaviour.

[39]  Csaba Szepesvári,et al.  Approximate Policy Iteration with Linear Action Models , 2012, AAAI.

[40]  Joelle Pineau,et al.  Combined Reinforcement Learning via Abstract Representations , 2018, AAAI.

[41]  Lihong Li,et al.  PAC model-free reinforcement learning , 2006, ICML.

[42]  Erik Talvitie Learning the Reward Function for a Misspecified Model , 2018, ICML.

[43]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[44]  Romain Laroche,et al.  On Value Function Representation of Long Horizon Problems , 2018, AAAI.

[45]  Razvan Pascanu,et al.  Imagination-Augmented Agents for Deep Reinforcement Learning , 2017, NIPS.

[46]  Stefanie Tellex,et al.  Advantages and Limitations of using Successor Features for Transfer in Reinforcement Learning , 2017, ArXiv.

[47]  Michael I. Jordan,et al.  Is Q-learning Provably Efficient? , 2018, NeurIPS.

[48]  Doina Precup,et al.  Metrics for Finite Markov Decision Processes , 2004, AAAI.

[49]  Erik Talvitie,et al.  Self-Correcting Models for Model-Based Reinforcement Learning , 2016, AAAI.

[50]  Lawson L. S. Wong,et al.  State Abstraction as Compression in Apprenticeship Learning , 2019, AAAI.

[51]  Samuel Gershman,et al.  Deep Successor Reinforcement Learning , 2016, ArXiv.

[52]  Kavosh Asadi,et al.  Lipschitz Continuity in Model-based Reinforcement Learning , 2018, ICML.

[53]  Peter Dayan,et al.  Improving Generalization for Temporal Difference Learning: The Successor Representation , 1993, Neural Computation.

[54]  Martin A. Riedmiller Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural Reinforcement Learning Method , 2005, ECML.

[55]  Demis Hassabis,et al.  Mastering Atari, Go, chess and shogi by planning with a learned model , 2019, Nature.

[56]  Michael L. Littman,et al.  State Abstractions for Lifelong Reinforcement Learning , 2018, ICML.