Review article "On the origins of decadal climate variability: a network perspective"

Abstract. This review is a synthesis of work spanning the last 25 yr. It is largely based on the use of climate networks to identify climate subsystems/major modes and to subsequently study how their collective behavior explains decadal variability. The central point is that a network of coupled nonlinear subsystems may at times begin to synchronize. If during synchronization the coupling between the subsystems increases, the synchronous state may, at some coupling strength threshold, be destroyed shifting climate to a new regime. This climate shift manifests itself as a change in global temperature trend. This mechanism, which is consistent with the theory of synchronized chaos, appears to be a very robust mechanism of the climate system. It is found in the instrumental records, in forced and unforced climate simulations, as well as in proxy records spanning several centuries.

[1]  D. Maraun,et al.  Epochs of phase coherence between El Niño/Southern Oscillation and Indian monsoon , 2005 .

[2]  Anastasios A. Tsonis,et al.  Searching for determinism in observed data: a review of the issues involved , 1994 .

[3]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[4]  W. Collins,et al.  The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation , 2001 .

[5]  Anastasios A. Tsonis,et al.  Mapping the channels of communication between the tropics and higher latitudes in the atmosphere , 1996 .

[6]  S. Strogatz Exploring complex networks , 2001, Nature.

[7]  E. Lorenz Dimension of weather and climate attractors , 1991, Nature.

[8]  D. Pierce,et al.  Anatomy of North Pacific Decadal Variability , 2002 .

[9]  Changsong Zhou,et al.  Dynamical weights and enhanced synchronization in adaptive complex networks. , 2006, Physical review letters.

[10]  James W. Hurrell,et al.  Decadal atmosphere-ocean variations in the Pacific , 1994 .

[11]  Paul J. Roebber,et al.  What Do Networks Have to Do with Climate , 2006 .

[12]  T. Delworth,et al.  Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? , 2007 .

[13]  Nicholas E. Graham,et al.  The 1976-77 Climate Shift of the Pacific Ocean , 1994 .

[14]  N. Graham Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: observations and model results , 1994 .

[15]  Jianping Huang,et al.  The relationship between the North Atlantic Oscillation and El Niño‐Southern Oscillation , 1998 .

[16]  Influences of ENSO SST Anomalies and Winter Storm Tracks on the Interannual Variability of Upper-Troposphere Water Vapor over the Northern Hemisphere Extratropics , 2000 .

[17]  S. Havlin,et al.  Climate networks around the globe are significantly affected by El Niño. , 2008, Physical review letters.

[18]  James B. Elsner,et al.  Granger causality and Atlantic hurricanes , 2007 .

[19]  Carroll,et al.  Short wavelength bifurcations and size instabilities in coupled oscillator systems. , 1995, Physical review letters.

[20]  Anastasios A. Tsonis,et al.  The pacemaker of major climate shifts , 2009 .

[21]  R. Mantegna Hierarchical structure in financial markets , 1998, cond-mat/9802256.

[22]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[24]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[25]  Sergey Kravtsov,et al.  Atlantic Multidecadal Oscillation and Northern Hemisphere’s climate variability , 2010, Climate Dynamics.

[26]  Michael Ponater,et al.  On the Roles of Tropical and Midlatitude SSTs in Forcing Interannual to Interdecadal Variability in the Winter Northern Hemisphere Circulation , 1994 .

[27]  J. Elsner,et al.  Nonlinear dynamics established in the ENSO , 1993 .

[28]  Leonard A. Smith Intrinsic limits on dimension calculations , 1988 .

[29]  J. Wallace,et al.  The Seasonal Footprinting Mechanism in the Pacific: Implications for ENSO(. , 2003 .

[30]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Geli Wang,et al.  On the Role of Atmospheric Teleconnections in Climate , 2008 .

[32]  Stewart W. Franks,et al.  Long‐term behaviour of ENSO: Interactions with the PDO over the past 400 years inferred from paleoclimate records , 2006 .

[33]  Anastasios A. Tsonis,et al.  Climate Mode Covariability and Climate shifts , 2011, Int. J. Bifurc. Chaos.

[34]  D. Vimont,et al.  Footprinting: A seasonal connection between the tropics and mid‐latitudes , 2001 .

[35]  D. Pozo-Vázquez,et al.  The Association between ENSO and Winter Atmospheric Circulation and Temperature in the North Atlantic Region , 2001 .

[36]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[37]  J. Elsner,et al.  The weather attractor over very short timescales , 1988, Nature.

[38]  A. Tsonis,et al.  Topology and predictability of El Niño and La Niña networks. , 2008, Physical review letters.

[39]  G. Branstator Circumglobal Teleconnections, the Jet Stream Waveguide, and the North Atlantic Oscillation , 2002 .

[40]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[41]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[42]  Emily A. Fogarty,et al.  Visibility network of United States hurricanes , 2009 .

[43]  Petter Holme,et al.  Subnetwork hierarchies of biochemical pathways , 2002, Bioinform..

[44]  J. Elsner,et al.  Chaos, Strange Attractors, and Weather. , 1989 .

[45]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[46]  Klaus Lehnertz,et al.  From brain to earth and climate systems: Small-world interaction networks or not? , 2011, Chaos.

[47]  Potsdam,et al.  Complex networks in climate dynamics. Comparing linear and nonlinear network construction methods , 2009, 0907.4359.

[48]  David B. Stephenson,et al.  Arctic Oscillation or North Atlantic Oscillation , 2001 .

[49]  S. Havlin,et al.  Pattern of climate network blinking links follows El Niño events , 2008 .

[50]  J. Wallace,et al.  Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter , 1981 .

[51]  C. Essex,et al.  Correlation dimension and systematic geometric effects. , 1990, Physical Review A. Atomic, Molecular, and Optical Physics.

[52]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[53]  Keith W. Dixon,et al.  GFDL's CM2 global coupled climate models. Part IV: Idealized climate response , 2006 .

[54]  L. D. Costa,et al.  Community structure and dynamics in climate networks , 2011 .

[55]  Adam A. Scaife,et al.  The role of the stratosphere in the European climate response to El Niño , 2009 .

[56]  S. Klein,et al.  GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics , 2006 .

[57]  J. Wallace,et al.  The Arctic oscillation signature in the wintertime geopotential height and temperature fields , 1998 .

[58]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[59]  Anastasios A. Tsonis,et al.  Has the climate recently shifted? , 2009 .

[60]  Milan Paluš,et al.  Discerning connectivity from dynamics in climate networks , 2011 .

[61]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[62]  W. Ditto,et al.  Chaos: From Theory to Applications , 1992 .

[63]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[64]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[65]  M. Mézard,et al.  Wealth condensation in a simple model of economy , 2000, cond-mat/0002374.

[66]  R. Wayne Higgins,et al.  The Pacific–South American Modes and Tropical Convection during the Southern Hemisphere Winter , 1998 .

[67]  Norbert Marwan,et al.  The backbone of the climate network , 2009, 1002.2100.

[68]  S. Havlin,et al.  Self-similarity of complex networks , 2005, Nature.

[69]  A. Barnston,et al.  Classification, seasonality and persistence of low-frequency atmospheric circulation patterns , 1987 .

[70]  Georges G. E. Gielen,et al.  Behavioral modeling of (coupled) harmonic oscillators , 2002, DAC '02.

[71]  James W. Hurrell,et al.  North Atlantic climate variability: phenomena, impacts and mechanisms , 2001 .

[72]  Sergey Kravtsov,et al.  A new dynamical mechanism for major climate shifts , 2007 .

[73]  J. Hurrell Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation , 1995, Science.

[74]  Max J. Suarez,et al.  A Delayed Action Oscillator for ENSO , 1988 .

[75]  Milan Palus,et al.  Small-world topology of functional connectivity in randomly connected dynamical systems , 2012, Chaos.

[76]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[77]  A. Barabasi,et al.  The topology of the transcription regulatory network in the yeast , 2002, cond-mat/0205181.

[78]  Martin Suter,et al.  Small World , 2002 .

[79]  T. Barnett,et al.  Interdecadal modulation of ENSO teleconnections , 1998 .

[80]  G. Nicolis,et al.  Is there a climatic attractor? , 1984, Nature.