MODELING SHAPES AND DYNAMICS OF CONFINED BUBBLES

We review mathematical models of confined bubbles, emphasizing physical mechanisms as expressed in simple geometries. Molecular interactions between liquid, gas, and the confining solid are all important and are described through the disjoining pressure concept. Methods for finding static shapes are considered. The static solution is a springboard for discussing pressure-driven and surface-tension-driven flows, both of which involve viscous effects and macroscopic films entrained near apparent contact lines. We next discuss vapor bubbles produced by thermal effects. Vaporization localized near contact lines and condensation distributed in colder parts of the interface lead to steady vapor bubbles. Their size is determined through global constraints. Unsteady vapor bubbles are discussed and we end with thoughts on open problems.

[1]  Andrea Prosperetti,et al.  Growth and collapse of a vapor bubble in a narrow tube , 2000 .

[2]  T. Ye,et al.  Direct numerical simulations of micro-bubble expansion in gas embolotherapy. , 2004, Journal of biomechanical engineering.

[3]  T. Melli,et al.  Mechanics of Gas-Liquid Flow in Packed-Bed Contactors , 1991 .

[4]  C. Radke,et al.  Three-Dimensional Menisci in Polygonal Capillaries , 1992 .

[5]  Chih-Ming Ho,et al.  Transport of bubbles in square microchannels , 2002 .

[6]  E. B. Dussan,et al.  LIQUIDS ON SOLID SURFACES: STATIC AND DYNAMIC CONTACT LINES , 1979 .

[7]  H. J. Morel-Seytoux,et al.  Multiphase Fluid Flow Through Porous Media , 1976 .

[8]  Matthias Heil,et al.  The steady propagation of a semi-infinite bubble into a tube of elliptical or rectangular cross-section , 2002, Journal of Fluid Mechanics.

[9]  S. Bankoff,et al.  The unsteady expansion and contraction of a long two-dimensional vapour bubble between superheated or subcooled parallel plates , 1999, Journal of Fluid Mechanics.

[10]  P. Wayner,et al.  Stability and Oscillations in an Evaporating Corner Meniscus , 2004 .

[11]  P. Wayner,et al.  Evaporation from a two-dimensional extended meniscus , 1972 .

[12]  S. Herminghaus,et al.  Wetting: Statics and dynamics , 1997 .

[13]  L. Schwartz,et al.  Dewetting Patterns in a Drying Liquid Film. , 2001, Journal of colloid and interface science.

[14]  H. Le,et al.  Progress and Trends in Ink-jet Printing Technology , 1998, Journal of Imaging Science and Technology.

[15]  Michael J. Miksis,et al.  Slip over rough and coated surfaces , 1994, Journal of Fluid Mechanics.

[16]  P. Saffman,et al.  THE PENETRATION OF A FINGER INTO A VISCOUS FLUID IN A CHANNEL AND TUBE , 1985 .

[17]  F. Bretherton The motion of long bubbles in tubes , 1961, Journal of Fluid Mechanics.

[18]  G. Homsy,et al.  Thermocapillary migration of long bubbles in polygonal tubes. II. Experiments , 2003 .

[19]  Chang-JinCJ Kim,et al.  Valveless pumping using traversing vapor bubbles in microchannels , 1998 .

[20]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[21]  Satish G. Kandlikar,et al.  Fundamental issues related to flow boiling in minichannels and microchannels , 2002 .

[22]  Stephen K. Wilson The steady thermocapillary‐driven motion of a large droplet in a closed tube , 1993 .

[23]  V. Dhir BOILING HEAT TRANSFER , 1998 .

[24]  A. Yarin Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing ... , 2006 .

[25]  J. Fabre,et al.  MODELING OF TWO-PHASE SLUG FLOW , 1992 .

[26]  G. Homsy,et al.  Evaporating menisci of wetting fluids , 1980 .

[27]  Andrea Prosperetti,et al.  Bubble growth on an impulsively powered microheater , 2004 .

[28]  Andrea Prosperetti,et al.  Growth and collapse of a vapor bubble in a small tube , 1999 .

[29]  P. Gennes Wetting: statics and dynamics , 1985 .

[30]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[31]  Paul Concus,et al.  On capillary free surfaces in the absence of gravity , 1974 .

[32]  Yury Gogotsi,et al.  Attoliter fluid experiments in individual closed-end carbon nanotubes: Liquid film and fluid interface dynamics , 2002 .

[33]  C. Kim,et al.  Electrowetting and electrowetting-on-dielectric for microscale liquid handling , 2002 .

[34]  Jonathan Rose,et al.  Accurate approximate equations for intensive sub-sonic evaporation , 2000 .

[35]  A. Rozhkov,et al.  Foam in porous media: thermodynamic and hydrodynamic peculiarities , 1999 .

[36]  A. Asai,et al.  Three-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer , 1992 .

[37]  S. Morris Contact angles for evaporating liquids predicted and compared with existing experiments , 2001, Journal of Fluid Mechanics.

[38]  J. Freund The atomic detail of an evaporating meniscus , 2005 .

[39]  C. A. Busse,et al.  Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls , 1992 .

[40]  B. Legait,et al.  Laminar flow of two phases through a capillary tube with variable square cross-section , 1983 .

[41]  W. Kolb,et al.  The motion of long bubbles in tubes of square cross section , 1993 .

[42]  J. Israelachvili Intermolecular and surface forces , 1985 .

[43]  George M. Homsy,et al.  Thermocapillary migration of long bubbles in polygonal tubes. I. Theory , 2001 .

[44]  R. Fair,et al.  Electrowetting-based actuation of liquid droplets for microfluidic applications , 2000 .

[45]  Qingfang Wu,et al.  A slope-dependent disjoining pressure for non-zero contact angles , 2004, Journal of Fluid Mechanics.

[46]  L. Landau,et al.  Dragging of a Liquid by a Moving Plate , 1988 .

[47]  C. Tien,et al.  Fluid Mechanics of Heat Pipes , 1975 .

[48]  S. Kandlikar,et al.  Numerical simulation of growth of a vapor bubble during flow boiling of water in a microchannel , 2005 .

[49]  G. Homsy,et al.  Dynamic response of geometrically constrained vapor bubbles. , 2002, Journal of colloid and interface science.

[50]  M. G.,et al.  VISCOUS FINGERING IN POROUS MEDIA , 2002 .

[51]  M. Burns,et al.  Thermocapillary Pumping of Discrete Drops in Microfabricated Analysis Devices , 1999 .

[52]  G. M. Homsy,et al.  Steady Vapor Bubbles in Rectangular Microchannels. , 2001, Journal of colloid and interface science.

[53]  Hsueh-Chia Chang,et al.  Transport of gas bubbles in capillaries , 1989 .

[54]  Clayton J. Radke,et al.  The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow , 1995, Journal of Fluid Mechanics.

[55]  Clayton J. Radke,et al.  The motion of long bubbles in polygonal capillaries. Part 1. Thin films , 1995, Journal of Fluid Mechanics.

[56]  Aa Anton Darhuber,et al.  PRINCIPLES OF MICROFLUIDIC ACTUATION BY MODULATION OF SURFACE STRESSES , 2005 .

[57]  P. Wayner,et al.  Shape of an Evaporating Completely Wetting Extended Meniscus , 1996 .

[58]  Ashutosh Sharma Equilibrium and dynamics of evaporating or condensing thin fluid domains : Thin film stability and heterogeneous nucleation , 1998 .

[59]  S. G. Bankoff,et al.  Nonlinear stability of evaporating/condensing liquid films , 1988, Journal of Fluid Mechanics.

[60]  C. Clanet,et al.  On the motion of bubbles in vertical tubes of arbitrary cross-sections: some complements to the Dumitrescu–Taylor problem , 2004, Journal of Fluid Mechanics.

[61]  Björn Palm,et al.  Numerical simulation of bubbly two-phase flow in a narrow channel , 2002 .

[62]  Bishop Dj,et al.  The rise of optical switching. , 2001 .

[63]  Junfeng Zhang,et al.  Lattice boltzmann study on the contact angle and contact line dynamics of liquid-vapor interfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[64]  Clayton J. Radke,et al.  Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore , 1988 .

[65]  Liwei Lin Microscale thermal bubble formation : Thermophysical phenomena and applications , 1998 .

[66]  George M. Homsy,et al.  Three-Dimensional Steady Vapor Bubbles in Rectangular Microchannels , 2001 .