Degenerate flag varieties and Schubert varieties: a characteristic free approach
暂无分享,去创建一个
Martina Lanini | Peter Littelmann | Giovanni Cerulli Irelli | M. Lanini | P. Littelmann | G. C. Irelli
[1] M. Finkelberg,et al. Degenerate flag varieties of type A: Frobenius splitting and BW theorem , 2011, 1103.1491.
[2] S. Ramanan,et al. Projective normality of flag varieties and Schubert varieties , 1985 .
[3] Evgeny Feigin,et al. PBW-filtration over ℤ and Compatible Bases for V ℤ ( λ ) in Type A n and C n , 2013 .
[4] Evgeny Feigin,et al. ${\mathbb G}_a^M$ degeneration of flag varieties , 2010, 1007.0646.
[5] M. Finkelberg,et al. Symplectic Degenerate Flag Varieties , 2011, Canadian Journal of Mathematics.
[6] J. Jantzen. Representations of algebraic groups , 1987 .
[7] C. S. Seshadri,et al. Geometry of GP−V , 1986 .
[8] O. Mathieu. Construction du groupe de Kac-Moody et applications , 1988 .
[9] Claudio Procesi,et al. Lie Groups: An Approach through Invariants and Representations , 2006 .
[10] A. Ramanathan. Equations defining schubert varieties and frobenius splitting of diagonals , 1987 .
[11] Evgeny Feigin,et al. PBW filtration and bases for symplectic Lie algebras , 2010, 1010.2321.
[12] Evgeny Feigin,et al. PBW filtration and bases for irreducible modules in type An , 2010, 1002.0674.
[13] Nicolas Bourbaki,et al. Eléments de mathématique : groupes et algèbres de Lie , 1972 .
[14] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[15] Martina Lanini,et al. Degenerate flag varieties of type A and C are Schubert varieties , 2014, 1403.2889.