Work-sensitive Dynamic Complexity of Formal Languages

Which amount of parallel resources is needed for updating a query result after changing an input? In this work we study the amount of work required for dynamically answering membership and range queries for formal languages in parallel constant time with polynomially many processors. As a prerequisite, we propose a framework for specifying dynamic, parallel, constant-time programs that require small amounts of work. This framework is based on the dynamic descriptive complexity framework by Patnaik and Immerman.

[1]  Inderpal Singh Mumick,et al.  Incremental Evaluation Of Datalog Queries , 1999 .

[2]  Peter Bro Miltersen,et al.  Dynamic word problems , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[3]  Egon Börger Abstract State Machines: a unifying view of models of computation and of system design frameworks , 2005, Ann. Pure Appl. Log..

[4]  Kurt Mehlhorn,et al.  Maintaining dynamic sequences under equality tests in polylogarithmic time , 1994, SODA '94.

[5]  S. Sitharama Iyengar,et al.  Introduction to parallel algorithms , 1998, Wiley series on parallel and distributed computing.

[6]  HolmJacob,et al.  Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity , 2001 .

[7]  Amir Abboud,et al.  If the Current Clique Algorithms are Optimal, So is Valiant's Parser , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[8]  Peter Bro Miltersen,et al.  Complexity Models for Incremental Computation , 1994, Theor. Comput. Sci..

[9]  Thomas Schwentick,et al.  Reachability Is in DynFO , 2015, ICALP.

[10]  Thomas Schwentick,et al.  Sketches of Dynamic Complexity , 2020, SIGMOD Rec..

[11]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[12]  Heribert Vollmer,et al.  Introduction to Circuit Complexity: A Uniform Approach , 2010 .

[13]  Thomas Schwentick,et al.  The dynamic complexity of formal languages , 2008, TOCL.

[14]  J. Rhodes,et al.  Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines , 1965 .

[15]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[16]  I. V. Ramakrishnan,et al.  O(1) Parallel Time Incremental Graph Algorithms , 1985, FSTTCS.

[17]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[18]  Marvin Künnemann,et al.  Fine-Grained Complexity of Analyzing Compressed Data: Quantifying Improvements over Decompress-and-Solve , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[19]  Jacob Holm,et al.  Fully-dynamic planarity testing in polylogarithmic time , 2020, STOC.

[20]  Thomas Schwentick,et al.  Dynamic complexity: recent updates , 2016, SIGL.

[21]  Neil Immerman,et al.  Dyn-FO: A Parallel, Dynamic Complexity Class , 1997, J. Comput. Syst. Sci..

[22]  Dominik D. Freydenberger,et al.  Dynamic Complexity of Document Spanners , 2020, ICDT.

[23]  Stephen Alstrup,et al.  Dynamic nested brackets , 2004, Inf. Comput..

[24]  Leonid Libkin,et al.  Elements of Finite Model Theory , 2004, Texts in Theoretical Computer Science.

[25]  Peter Bro Miltersen,et al.  Dynamic Algorithms for the Dyck Languages , 1995, WADS.

[26]  Jianwen Su,et al.  First-Order Incremental Evaluation of Datalog Queries , 1993, DBPL.

[27]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[28]  Neil Immerman,et al.  Descriptive Complexity , 1999, Graduate Texts in Computer Science.