An analysis of spine fusion outcomes in sheep pre-clinical models

[1]  Manabu Ito,et al.  A preclinical large animal study on a novel intervertebral fusion cage covered with high porosity titanium sheets with a triple pore structure used for spinal fusion , 2015, European Spine Journal.

[2]  Zheng Guo,et al.  A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model. , 2014, Biomaterials.

[3]  Zhi-Yong Zhang,et al.  Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a poly-ether-ether-ketone cage in sheep vertebral fusion. , 2013, Artificial organs.

[4]  M. Wullschleger,et al.  Reliability of Clinical Measurement for Assessing Spinal Fusion: An Experimental Sheep Study , 2012, Spine.

[5]  S. Lynch,et al.  Augment Bone Graft Products Compare Favorably With Autologous Bone Graft in an Ovine Model of Lumbar Interbody Spine Fusion , 2012, Spine.

[6]  Liang Chen,et al.  Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic protein-2 in ovine lumbar interbody fusion. , 2011, Journal of biomedical materials research. Part A.

[7]  S. Itescu,et al.  Cervical Interbody Fusion Is Enhanced by Allogeneic Mesenchymal Precursor Cells in an Ovine Model , 2011, Spine.

[8]  A. Zannettino,et al.  A Comparison of Mesenchymal Precursor Cells and Amnion Epithelial Cells for Enhancing Cervical Interbody Fusion in an Ovine Model , 2011, Neurosurgery.

[9]  Emily M. Lindley,et al.  Evaluation of ABM/P-15 versus autogenous bone in an ovine lumbar interbody fusion model , 2010, European Spine Journal.

[10]  M. Gelinsky,et al.  Cages Augmented With Mineralized Collagen and Platelet-Rich Plasma as an Osteoconductive/Inductive Combination for Interbody Fusion , 2010, Spine.

[11]  Jiake Xu,et al.  Natural bone collagen scaffold combined with autologous enriched bone marrow cells for induction of osteogenesis in an ovine spinal fusion model. , 2009, Tissue engineering. Part A.

[12]  B. Cunningham,et al.  Ceramic granules enhanced with B2A peptide for lumbar interbody spine fusion: an experimental study using an instrumented model in sheep. , 2009, Journal of neurosurgery. Spine.

[13]  A. Turner,et al.  Efficacy of silicated calcium phosphate graft in posterolateral lumbar fusion in sheep. , 2007, The spine journal : official journal of the North American Spine Society.

[14]  Munish C. Gupta,et al.  Efficacy of Mesenchymal Stem Cell Enriched Grafts in an Ovine Posterolateral Lumbar Spine Model , 2007, Spine.

[15]  O. Duygulu,et al.  The effects of magnesium particles in posterolateral spinal fusion: an experimental in vivo study in a sheep model. , 2007, Journal of neurosurgery. Spine.

[16]  T. Smit,et al.  Bioabsorbable interbody cages in a sheep cervical spine fusion model. , 2005, Spine.

[17]  Daniel H. Kim,et al.  Evaluation of HealosMP52 Osteoinductive Bone Graft for Instrumented Lumbar Intertransverse Process Fusion in Sheep , 2004, Spine.

[18]  Munish C. Gupta,et al.  Efficacy of Osteogenic Protein-1 in a Challenging Multilevel Fusion Model , 2004, Spine.

[19]  A. Weckbach,et al.  Evaluation of an injectable calcium phosphate cement as an autograft substitute for transpedicular lumbar interbody fusion: a controlled, prospective study in the sheep model , 2003, European Spine Journal.

[20]  Michel Assad,et al.  Porous titanium-nickel for intervertebral fusion in a sheep model: part 1. Histomorphometric and radiological analysis. , 2003, Journal of biomedical materials research. Part B, Applied biomaterials.

[21]  A. Weckbach,et al.  Successful Transpedicular Lumbar Interbody Fusion by Means of a Composite of Osteogenic Protein-1 (rhBMP-7) and Hydroxyapatite Carrier: A Comparison With Autograft and Hydroxyapatite in the Sheep Spine , 2002, Spine.

[22]  T. Mittlmeier,et al.  IGF-I and TGF-beta1 application by a poly-(D,L-lactide)-coated cage promotes intervertebral bone matrix formation in the sheep cervical spine. , 2002, Spine.

[23]  Thomas Mittlmeier,et al.  Influence of cage design on interbody fusion in a sheep cervical spine model. , 2002, Journal of neurosurgery.

[24]  J. Michael Kabo,et al.  Histologic Evaluation of the Efficacy of rhBMP-2 Compared With Autograft Bone in Sheep Spinal Anterior Interbody Fusion , 2002, Spine.

[25]  N. Haas,et al.  Comparison of BMP-2 and combined IGF-I/TGF-ß1 application in a sheep cervical spine fusion model , 2002, European Spine Journal.

[26]  T. Steffen,et al.  Porous tricalcium phosphate and transforming growth factor used for anterior spine surgery , 2001, European Spine Journal.

[27]  M. Magin,et al.  Improved Lumbar Vertebral Interbody Fusion Using rhOP-1: A Comparison of Autogenous Bone Graft, Bovine Hydroxylapatite (Bio-Oss), and BMP-7 (rhOP-1) in Sheep , 2001, Spine.

[28]  J M Toth,et al.  Direct Current Electrical Stimulation Increases the Fusion Rate of Spinal Fusion Cages , 2000, Spine.

[29]  T. Steffen,et al.  The efficacy of interconnected porous hydroxyapatite in achieving posterolateral lumbar fusion in sheep. , 2000, Spine.

[30]  K Kaneda,et al.  Does spinal instrumentation influence the healing process of posterolateral spinal fusion? An in vivo animal model. , 1999, Spine.

[31]  D. Hutmacher,et al.  Biological performance of a polycaprolactone-based scaffold plus recombinant human morphogenetic protein-2 (rhBMP-2) in an ovine thoracic interbody fusion model , 2013, European Spine Journal.

[32]  Xiang-Yang Wang,et al.  Anatomy of large animal spines and its comparison to the human spine: a systematic review , 2009, European Spine Journal.

[33]  A. Turner,et al.  Polyetheretherketone as a biomaterial for spinal applications. , 2006, Biomaterials.