High Degree Vertices, Eigenvalues and Diameter of Random Apollonian Networks

In this work we analyze basic properties of Random Apollonian Networks \cite{zhang,zhou}, a popular stochastic model which generates planar graphs with power law properties. Specifically, let $k$ be a constant and $\Delta_1 \geq \Delta_2 \geq .. \geq \Delta_k$ be the degrees of the $k$ highest degree vertices. We prove that at time $t$, for any function $f$ with $f(t) \rightarrow +\infty$ as $t \rightarrow +\infty$, $\frac{t^{1/2}}{f(t)} \leq \Delta_1 \leq f(t)t^{1/2}$ and for $i=2,...,k=O(1)$, $\frac{t^{1/2}}{f(t)} \leq \Delta_i \leq \Delta_{i-1} - \frac{t^{1/2}}{f(t)}$ with high probability (\whp). Then, we show that the $k$ largest eigenvalues of the adjacency matrix of this graph satisfy $\lambda_k = (1\pm o(1))\Delta_k^{1/2}$ \whp. Furthermore, we prove a refined upper bound on the asymptotic growth of the diameter, i.e., that \whp the diameter $d(G_t)$ at time $t$ satisfies $d(G_t) \leq \rho \log{t}$ where $\frac{1}{\rho}=\eta$ is the unique solution greater than 1 of the equation $\eta - 1 - \log{\eta} = \log{3}$. Finally, we investigate other properties of the model.

[1]  Alessandro Flammini,et al.  Modeling urban street patterns. , 2007, Physical review letters.

[2]  Sanjeev Goyal,et al.  A Noncooperative Model of Network Formation , 2000 .

[3]  Roberto F. S. Andrade,et al.  Spectral properties of the Apollonian network , 2005 .

[4]  Andrei Z. Broder,et al.  Workshop on Algorithms and Models for the Web Graph , 2007, WAW.

[5]  F. Chung,et al.  Complex Graphs and Networks , 2006 .

[6]  Charalampos E. Tsourakakis Fast Counting of Triangles in Large Real Networks without Counting: Algorithms and Laws , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[7]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[8]  A. P. Masucci,et al.  Random planar graphs and the London street network , 2009, 0903.5440.

[9]  J. S. Andrade,et al.  Apollonian networks: simultaneously scale-free, small world, euclidean, space filling, and with matching graphs. , 2004, Physical review letters.

[10]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[11]  Xin-Jian Xu,et al.  Comment on "Maximal planar networks with large clustering coefficient and power-law degree distribution". , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Alexis Darrasse,et al.  The Connectivity-Profile of Random Increasing k-trees , 2009, ANALCO.

[13]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[14]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[15]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[16]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[17]  Christos Faloutsos,et al.  Scalable modeling of real graphs using Kronecker multiplication , 2007, ICML '07.

[18]  Fan Chung Graham,et al.  The Spectra of Random Graphs with Given Expected Degrees , 2004, Internet Math..

[19]  Yong Gao The degree distribution of random k-trees , 2009, Theor. Comput. Sci..

[20]  S. Boorman A Combinatorial Optimization Model for Transmission of Job Information through Contact Networks , 1975 .

[21]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[22]  Christos H. Papadimitriou,et al.  On the Eigenvalue Power Law , 2002, RANDOM.

[23]  J. Marckert,et al.  Some families of increasing planar maps , 2007, 0712.0593.

[24]  O. Bodini,et al.  Distances in random Apollonian network structures , 2007, 0712.2129.

[25]  Fan Chung Graham,et al.  A Random Graph Model for Power Law Graphs , 2001, Exp. Math..

[26]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[27]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[28]  Jonathan P K Doye,et al.  Self-similar disk packings as model spatial scale-free networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Mihail N. Kolountzakis,et al.  Efficient Triangle Counting in Large Graphs via Degree-Based Vertex Partitioning , 2010, Internet Math..

[30]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[31]  Alois Panholzer,et al.  Ordered increasing k-trees: Introduction and analysis of a preferential attachment network model , 2010 .

[32]  Dinesh Manocha,et al.  PLEdestrians: a least-effort approach to crowd simulation , 2010, SCA '10.

[33]  Nicholas C. Wormald,et al.  Growing Protean Graphs , 2007, Internet Math..

[34]  Alan M. Frieze,et al.  High Degree Vertices and Eigenvalues in the Preferential Attachment Graph , 2005, Internet Math..

[35]  Luc Devroye,et al.  Large Deviations for the Weighted Height of an Extended Class of Trees , 2006, Algorithmica.

[36]  Stefan Erickson,et al.  Apollonian Circle Packings , 2022 .

[37]  Béla Bollobás,et al.  Random Graphs , 1985 .

[38]  C. L. Mallows,et al.  Apollonian circle packings:number theory , 2000 .

[39]  Alan M. Frieze,et al.  A general model of web graphs , 2003, Random Struct. Algorithms.

[40]  Tao Zhou,et al.  Maximal planar networks with large clustering coefficient and power-law degree distribution. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Béla Bollobás,et al.  The Diameter of a Scale-Free Random Graph , 2004, Comb..

[42]  Guy E. Blelloch,et al.  Compact representations of separable graphs , 2003, SODA '03.

[43]  Craig Partridge,et al.  Proceedings of the conference on Applications, Technologies, Architectures, and Protocols for Computer Communication , 2000, SIGCOMM 2000.

[44]  Ryuhei Uehara,et al.  Scale Free Properties of Random k-Trees , 2010, Math. Comput. Sci..

[45]  David W. Boyd,et al.  The sequence of radii of the Apollonian packing , 1982 .

[46]  David Eisenstat,et al.  Random Road Networks: The Quadtree Model , 2010, ANALCO.

[47]  Alexis Darrasse,et al.  Degree distribution of random Apollonian network structures and Boltzmann sampling , 2007 .