Nonlocal plate model for nonlinear bending of bilayer graphene sheets subjected to transverse loads in thermal environments

[1]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[2]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[3]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[4]  Kin Liao,et al.  MOLECULAR AND CONTINUUM MECHANICS MODELING OF GRAPHENE DEFORMATION , 2001 .

[5]  P. Tong,et al.  Couple stress based strain gradient theory for elasticity , 2002 .

[6]  Fan Yang,et al.  Experiments and theory in strain gradient elasticity , 2003 .

[7]  F. Yuan,et al.  Simulation of elastic properties of single-walled carbon nanotubes , 2003 .

[8]  Quan Wang,et al.  Wave propagation in carbon nanotubes via nonlocal continuum mechanics , 2005 .

[9]  Xingming Guo,et al.  Chirality- and size-dependent elastic properties of single-walled carbon nanotubes , 2005 .

[10]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[11]  K. Hwang,et al.  Thickness of graphene and single-wall carbon nanotubes , 2006 .

[12]  Hui‐Shen Shen,et al.  Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation , 2006 .

[13]  K. M. Liew,et al.  Equilibrium configuration and continuum elastic properties of finite sized graphene , 2006 .

[14]  Yu Wang,et al.  Bending of nanoscale structures: Inconsistency between atomistic simulation and strain gradient elasticity solution , 2007 .

[15]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[16]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[17]  C. Wang,et al.  Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory , 2007 .

[18]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[19]  H. V. D. Zant,et al.  Nanomechanical properties of few-layer graphene membranes , 2008, 0802.0413.

[20]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[21]  Rasoul Khandan,et al.  A method for developing the equivalent continuum model of a single layer graphene sheet , 2008 .

[22]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[23]  S. Adhikari,et al.  Effective elastic mechanical properties of single layer graphene sheets , 2009, Nanotechnology.

[24]  A. Sakhaee-Pour,et al.  Elastic properties of single-layered graphene sheet , 2009 .

[25]  S. C. Pradhan,et al.  VIBRATION ANALYSIS OF NANO-SINGLE-LAYERED GRAPHENE SHEETS EMBEDDED IN ELASTIC MEDIUM BASED ON NONLOCAL ELASTICITY THEORY , 2009 .

[26]  W. Duan,et al.  Nonlinear bending and stretching of a circular graphene sheet under a central point load , 2009, Nanotechnology.

[27]  S. C. Pradhan,et al.  Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models , 2009 .

[28]  Le Shen,et al.  Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments , 2010 .

[29]  Hui‐Shen Shen,et al.  Nonlocal Shear Deformable Shell Model for Post-Buckling of Axially Compressed Double-Walled Carbon Nanotubes Embedded in an Elastic Matrix , 2010 .

[30]  Quan Wang Simulations of the bending rigidity of graphene , 2010 .

[31]  Zhonghua Ni,et al.  Anisotropic mechanical properties of graphene sheets from molecular dynamics , 2010 .

[32]  Hui‐Shen Shen,et al.  Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model , 2010 .

[33]  A. J. Gil,et al.  The bending of single layer graphene sheets: the lattice versus continuum approach , 2010, Nanotechnology.

[34]  Hui‐Shen Shen,et al.  Nonlocal shear deformable shell model for thermal postbuckling of axially compressed double-walled carbon nanotubes , 2010 .

[35]  N. Pu,et al.  Preparation and properties of a graphene reinforced nanocomposite conducting plate , 2010 .

[36]  Le Shen,et al.  Temperature-dependent elastic properties of single layer graphene sheets , 2010 .

[37]  B. Zhang,et al.  An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly , 2011 .

[38]  K. Novoselov Nobel Lecture: Graphene: Materials in the Flatland , 2011 .

[39]  Yuan Cheng,et al.  Mechanical properties of bilayer graphene sheets coupled by sp3 bonding , 2011 .

[40]  Le Shen,et al.  Nonlocal plate model for nonlinear bending of single-layer graphene sheets subjected to transverse loads in thermal environments , 2011 .

[41]  Heng-An Wu,et al.  Interlayer shear effect on multilayer graphene subjected to bending , 2012 .

[42]  K. Liew,et al.  Analysis of nonlinear forced vibration of multi-layered graphene sheets , 2012 .