Heat kernel and Green kernel comparison theorems for infinite graphs
暂无分享,去创建一个
[1] A. Kasue. A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold , 1982 .
[2] Y. Peres,et al. Random walks on a tree and capacity in the interval , 1992 .
[3] Wolfgang Woess,et al. Martin and end compactifications for non-locally finite graphs , 1993 .
[4] E. Mazet,et al. Théorèmes de Comparaison en Géométrie Riemannienne , 1976 .
[5] J. Dodziuk. Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .
[6] Wolfgang Woess,et al. Random Walks on Infinite Graphs and Groups — a Survey on Selected topics , 1994 .
[7] Peter Li,et al. Green's functions, harmonic functions, and volume comparison , 1995 .
[8] Shing-Tung Yau,et al. A lower bound for the heat kernel , 1981 .
[9] Martin boundaries of random walks: ends of trees and groups , 1987 .
[10] B. Mohar,et al. A Survey on Spectra of infinite Graphs , 1989 .
[11] R. Schoen,et al. Positive harmonic functions on complete manifolds of negative curvature , 1985 .