Erratum to: MicroRNAs involved in the browning process of adipocytes

[1]  F. Liu,et al.  miR-30 Promotes Thermogenesis and the Development of Beige Fat by Targeting RIP140 , 2015, Diabetes.

[2]  J. Kemper,et al.  MicroRNA 34a Inhibits Beige and Brown Fat Formation in Obesity in Part by Suppressing Adipocyte Fibroblast Growth Factor 21 Signaling and SIRT1 Function , 2014, Molecular and Cellular Biology.

[3]  F. Liu,et al.  Glucocorticoids Transcriptionally Regulate miR-27b Expression Promoting Body Fat Accumulation Via Suppressing the Browning of White Adipose Tissue , 2014, Diabetes.

[4]  M. Bhaskaran,et al.  MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. , 2014, Veterinary pathology.

[5]  J. Eckel,et al.  Browning of white fat: does irisin play a role in humans? , 2014, The Journal of endocrinology.

[6]  G. Ailhaud,et al.  MicroRNA‐26 Family Is Required for Human Adipogenesis and Drives Characteristics of Brown Adipocytes , 2014, Stem cells.

[7]  Mitchell J. Anderson,et al.  Reduced UCP-1 Content in In Vitro Differentiated Beige/Brite Adipocytes Derived from Preadipocytes of Human Subcutaneous White Adipose Tissues in Obesity , 2014, PloS one.

[8]  M. Trajkovski,et al.  MiR-27 orchestrates the transcriptional regulation of brown adipogenesis. , 2014, Metabolism: clinical and experimental.

[9]  Y. E. Chen,et al.  MicroRNA-27 (miR-27) Targets Prohibitin and Impairs Adipocyte Differentiation and Mitochondrial Function in Human Adipose-derived Stem Cells* , 2013, The Journal of Biological Chemistry.

[10]  S. Kuang,et al.  Distinct populations of adipogenic and myogenic Myf5-lineage progenitors in white adipose tissues[S] , 2013, Journal of Lipid Research.

[11]  M. Rudnicki,et al.  miR-133a Regulates Adipocyte Browning In Vivo , 2013, PLoS genetics.

[12]  B. Spiegelman Banting Lecture 2012 , 2013, Diabetes.

[13]  B. Pedersen,et al.  A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. , 2013, Cell metabolism.

[14]  T. Rülicke,et al.  Bi-directional interconversion of brite and white adipocytes , 2013, Nature Cell Biology.

[15]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[16]  H. Fröhlich,et al.  miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit , 2013, Nature Communications.

[17]  M. Stoffel,et al.  MyomiR-133 regulates brown fat differentiation through Prdm16 , 2012, Nature Cell Biology.

[18]  D. Guertin,et al.  PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. , 2012, Cell metabolism.

[19]  B. Spiegelman,et al.  Beige Adipocytes Are a Distinct Type of Thermogenic Fat Cell in Mouse and Human , 2012, Cell.

[20]  K. Ghoshal,et al.  Stat3‐mediated activation of microRNA‐23a suppresses gluconeogenesis in hepatocellular carcinoma by down‐regulating Glucose‐6‐phosphatase and peroxisome proliferator‐activated receptor gamma, coactivator 1 alpha , 2012, Hepatology.

[21]  Y. Kaneda,et al.  Essential Role for miR-196a in Brown Adipogenesis of White Fat Progenitor Cells , 2012, PLoS biology.

[22]  Y. Li,et al.  MicroRNA-141 Represses HBV Replication by Targeting PPARA , 2012, PloS one.

[23]  A. Carpentier,et al.  Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. , 2012, The Journal of clinical investigation.

[24]  T. Thum,et al.  Epigenetic modifications in cardiovascular disease , 2012, Basic Research in Cardiology.

[25]  K. Struhl,et al.  MiR-27b targets PPARγ to inhibit growth, tumor progression, and the inflammatory response in neuroblastoma cells , 2011, Oncogene.

[26]  N. Kosaka,et al.  Unraveling the Mystery of Cancer by Secretory microRNA: Horizontal microRNA Transfer between Living Cells , 2011, Front. Gene..

[27]  J. Timmons,et al.  Recruited vs. nonrecruited molecular signatures of brown, "brite," and white adipose tissues. , 2012, American journal of physiology. Endocrinology and metabolism.

[28]  S. Moore,et al.  MicroRNA regulation in mammalian adipogenesis , 2011, Experimental biology and medicine.

[29]  A. Bosserhoff,et al.  MicroRNA miR‐196a controls melanoma‐associated genes by regulating HOX‐C8 expression , 2011, International journal of cancer.

[30]  C. Dani,et al.  Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis , 2011, Genome Biology.

[31]  S. Subramaniam,et al.  MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation , 2011, Proceedings of the National Academy of Sciences.

[32]  Hong Zhou,et al.  MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1. , 2011, Stem cells and development.

[33]  E. Rooij,et al.  The Art of MicroRNA Research , 2011 .

[34]  Emmette R. Hutchison,et al.  miR-130 Suppresses Adipogenesis by Inhibiting Peroxisome Proliferator-Activated Receptor γ Expression , 2010, Molecular and Cellular Biology.

[35]  L. Pastore,et al.  miR‐519d Overexpression Is Associated With Human Obesity , 2010, Obesity.

[36]  H. Kung,et al.  miRNA-Mediated Functional Changes through Co-Regulating Function Related Genes , 2010, PloS one.

[37]  Shuang Huang,et al.  Ratio of miR-196s to HOXC8 messenger RNA correlates with breast cancer cell migration and metastasis. , 2010, Cancer research.

[38]  M. Fulham,et al.  A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. , 2010, American journal of physiology. Endocrinology and metabolism.

[39]  AnnaZampetaki,et al.  Plasma MicroRNA Profiling Reveals Loss of Endothelial MiR-126 and Other MicroRNAs in Type 2 Diabetes , 2010 .

[40]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[41]  Ryan M. O’Connell,et al.  MicroRNA-34a perturbs B lymphocyte development by repressing the forkhead box transcription factor Foxp1. , 2010, Immunity.

[42]  Federica Limana,et al.  Circulating microRNAs are new and sensitive biomarkers of myocardial infarction , 2010, European heart journal.

[43]  E. Flemington,et al.  MicroRNA miR-155 Inhibits Bone Morphogenetic Protein (BMP) Signaling and BMP-Mediated Epstein-Barr Virus Reactivation , 2010, Journal of Virology.

[44]  Joshua J. Forman,et al.  The code within the code: microRNAs target coding regions , 2010, Cell cycle.

[45]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[46]  A. Kim,et al.  miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. , 2010, Biochemical and biophysical research communications.

[47]  J. Sheng,et al.  Effect of miRNA‐10b in regulating cellular steatosis level by targeting PPAR‐α expression, a novel mechanism for the pathogenesis of NAFLD , 2010, Journal of gastroenterology and hepatology.

[48]  Jan Nedergaard,et al.  Chronic Peroxisome Proliferator-activated Receptor γ (PPARγ) Activation of Epididymally Derived White Adipocyte Cultures Reveals a Population of Thermogenically Competent, UCP1-containing Adipocytes Molecularly Distinct from Classic Brown Adipocytes* , 2009, The Journal of Biological Chemistry.

[49]  C. Dani,et al.  microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. , 2009, Biochemical and biophysical research communications.

[50]  W. D. van Marken Lichtenbelt,et al.  Cold-activated brown adipose tissue in healthy men. , 2009, The New England journal of medicine.

[51]  D. Kuang,et al.  MicroRNA-155 Regulates Inflammatory Cytokine Production in Tumor-associated Macrophages via Targeting C/EBPβ , 2009, Cellular and Molecular Immunology.

[52]  C. Croce,et al.  Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. , 2009, Blood.

[53]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[54]  J. Stenvang,et al.  Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF , 2009, Nucleic acids research.

[55]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[56]  P. Galle,et al.  High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. , 2009, World journal of gastroenterology.

[57]  Y. Bae,et al.  miR‐196a Regulates Proliferation and Osteogenic Differentiation in Mesenchymal Stem Cells Derived From Human Adipose Tissue , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[58]  Jianping Ye,et al.  A role of miR‐27 in the regulation of adipogenesis , 2009, The FEBS journal.

[59]  Manuel A. S. Santos,et al.  MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells , 2009, Proceedings of the National Academy of Sciences.

[60]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[61]  A. Ballabio,et al.  MicroRNA target prediction by expression analysis of host genes. , 2009, Genome research.

[62]  Aimee L Jackson,et al.  Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. , 2008, Cancer research.

[63]  Konstantinos N. Malizos,et al.  Integrative MicroRNA and Proteomic Approaches Identify Novel Osteoarthritis Genes and Their Collaborative Metabolic and Inflammatory Networks , 2008, PloS one.

[64]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[65]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[66]  B. Spiegelman,et al.  PRDM16 controls a brown fat/skeletal muscle switch , 2008, Nature.

[67]  T. Wurdinger,et al.  MicroRNA 21 Promotes Glioma Invasion by Targeting Matrix Metalloproteinase Regulators , 2008, Molecular and Cellular Biology.

[68]  M. Lacey,et al.  MicroRNA-155 Is an Epstein-Barr Virus-Induced Gene That Modulates Epstein-Barr Virus-Regulated Gene Expression Pathways , 2008, Journal of Virology.

[69]  W. Gerald,et al.  Endogenous human microRNAs that suppress breast cancer metastasis , 2008, Nature.

[70]  G. Nuovo,et al.  Experimental validation of miRNA targets. , 2008, Methods.

[71]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[72]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[73]  Jan Nedergaard,et al.  Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages , 2007, Proceedings of the National Academy of Sciences.

[74]  Peter F Stadler,et al.  Evolution of microRNAs. , 2006, Methods in molecular biology.

[75]  Donald C. Chang,et al.  The microRNA: overview of the RNA gene that modulates gene functions. , 2006, Methods in molecular biology.

[76]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[77]  Jan Nedergaard,et al.  Brown adipose tissue: function and physiological significance. , 2004, Physiological reviews.

[78]  J. Himms-Hagen,et al.  Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. , 2000, American journal of physiology. Cell physiology.

[79]  N. Rothwell,et al.  Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. , 1983, Clinical science.