Effective Reduction in Crosstalk Effects in Quaternary Integrated Circuits Using Mixed Carbon Nanotube Bundle Interconnects

[1]  Ali Jalali,et al.  Active Shielding of MWCNT Bundle Interconnects: An Efficient Approach to Cancellation of Crosstalk-Induced Functional Failures in Ternary Logic , 2019, IEEE Transactions on Electromagnetic Compatibility.

[2]  Keivan Navi,et al.  Ultra-Efficient Fuzzy Min/Max Circuits Based on Carbon Nanotube FETs , 2018, IEEE Transactions on Fuzzy Systems.

[3]  Ali Jalali,et al.  On the Impacts of Process and Temperature Variations on the Crosstalk Effects in MWCNT Bundle Nanointerconnects in Ternary Logic , 2018, IEEE Transactions on Nanotechnology.

[4]  Mohammad Hossein Moaiyeri,et al.  An efficient majority-based compressor for approximate computing in the nano era , 2017, Microsystem Technologies.

[5]  M. K. Anvarifard,et al.  A novel graphene nanoribbon FET with an extra peak electric field (EFP-GNRFET) for enhancing the electrical performances , 2017 .

[6]  Mohammad Hossein Moaiyeri,et al.  Performance analysis and enhancement of 10-nm GAA CNTFET-based circuits in the presence of CNT-metal contact resistance , 2017, Journal of Computational Electronics.

[7]  Milad Zoghi,et al.  Armchair Graphene Nanoribbon Resonant Tunneling Diodes Using Antidote and BN Doping , 2016, IEEE Transactions on Electron Devices.

[8]  Ali Bohlooli,et al.  Efficient CNTFET-based design of quaternary logic gates and arithmetic circuits , 2016, Microelectron. J..

[9]  Ramin Rajaei,et al.  Radiation-Hardened Design of Nonvolatile MRAM-Based FPGA , 2016, IEEE Transactions on Magnetics.

[10]  Mahdi Fazeli,et al.  Soft Error-Tolerant Design of MRAM-Based Nonvolatile Latches for Sequential Logics , 2015, IEEE Transactions on Magnetics.

[11]  Fabrizio Lombardi,et al.  Design and Evaluation of Multiple Valued Logic Gates Using Pseudo N-Type Carbon Nanotube FETs , 2014, IEEE Transactions on Nanotechnology.

[12]  Brajesh Kumar Kaushik,et al.  Analysis of Delay and Dynamic Crosstalk in Bundled Carbon Nanotube Interconnects , 2014, IEEE Transactions on Electromagnetic Compatibility.

[13]  Mehdi Saremi,et al.  Modeling of lightly doped drain and source graphene nanoribbon field effect transistors , 2013 .

[14]  Yong-Bin Kim,et al.  Design of a Ternary Memory Cell Using CNTFETs , 2012, IEEE Transactions on Nanotechnology.

[15]  S. D. Pable,et al.  Interconnect Design for Subthreshold Circuits , 2012, IEEE Transactions on Nanotechnology.

[16]  Keivan Navi,et al.  Design and Evaluation of CNFET-Based Quaternary Circuits , 2012, Circuits, Systems, and Signal Processing.

[17]  Hai Lin,et al.  Modeling of Crosstalk Effects in Multiwall Carbon Nanotube Interconnects , 2012, IEEE Transactions on Electromagnetic Compatibility.

[18]  D. Das,et al.  Analysis of Crosstalk in Single- and Multiwall Carbon Nanotube Interconnects and Its Impact on Gate Oxide Reliability , 2011, IEEE Transactions on Nanotechnology.

[19]  Gaofeng Wang,et al.  Estimation of Time Delay and Repeater Insertion in Multiwall Carbon Nanotube Interconnects , 2011, IEEE Transactions on Electron Devices.

[20]  M. S. Sarto,et al.  Comparative analysis of TL models for multilayer graphene nanoribbon and multiwall carbon nanotube interconnects , 2010, 2010 IEEE International Symposium on Electromagnetic Compatibility.

[21]  M. S. Sarto,et al.  Fast Transient Analysis of Next-Generation Interconnects Based on Carbon Nanotubes , 2010, IEEE Transactions on Electromagnetic Compatibility.

[22]  Q.H. Liu,et al.  Crosstalk Prediction of Single- and Double-Walled Carbon-Nanotube (SWCNT/DWCNT) Bundle Interconnects , 2009, IEEE Transactions on Electron Devices.

[23]  Prachi Patel-Predd,et al.  Update: Carbon-Nanotube Wiring Gets Real , 2008 .

[24]  H. Wong,et al.  A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part I: Model of the Intrinsic Channel Region , 2007, IEEE Transactions on Electron Devices.

[25]  Jie Deng,et al.  A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Application—Part II: Full Device Model and Circuit Performance Benchmarking , 2007, IEEE Transactions on Electron Devices.

[26]  J. Meindl,et al.  Compact physical models for multiwall carbon-nanotube interconnects , 2006, IEEE Electron Device Letters.

[27]  W. Steinhögl,et al.  Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller , 2005 .

[28]  G. Duesberg,et al.  Carbon nanotubes for interconnect applications , 2002, IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004..

[29]  Shyh-Chyi Wong,et al.  Modeling of interconnect capacitance, delay, and crosstalk in VLSI , 2000 .

[30]  A. G. Perri,et al.  Effects of Temperature in CNTFET-Based Design of Digital Circuits , 2018 .

[31]  Ali Jalali,et al.  Analysis of Crosstalk Effects for Multiwalled Carbon Nanotube Bundle Interconnects in Ternary Logic and Comparison With Cu Interconnects , 2017, IEEE Transactions on Nanotechnology.

[32]  M. K. Anvarifard,et al.  A Guideline for Achieving the Best Electrical Performance with Strategy of Halo in Graphene Nanoribbon Field Effect Transistor , 2016 .

[33]  M. S. Sarto,et al.  Single-Conductor Transmission-Line Model of Multiwall Carbon Nanotubes , 2010, IEEE Transactions on Nanotechnology.