Standing Waves for Phase Transitions in a Spherically Symmetric Nozzle

We study the existence of standing waves for liquid/vapor phase transition in a spherically symmetric nozzle. The system is singularly perturbed and the solution consists of an internal layer where the liquid quickly becomes vapor. Using methods from dynamical systems theory, we prove the existence of the internal layer as a heteroclinic orbit connecting the liquid state to the vapor state. The heteroclinic orbit is reproduced numerically and is also shown numerically to be a transversal heteroclinic orbit. The proof of the existence of an exact standing wave solution near the singular limit is based on the geometric singular perturbation theory and is outlined in the paper.

[1]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[2]  Barbara Lee Keyfitz,et al.  A proof of existence of perturbed steady transonic shocks via a free boundary problem , 2000 .

[3]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[4]  Andrea Corli,et al.  On a Model of Multiphase Flow , 2008, SIAM J. Math. Anal..

[5]  Shuxing Chen Compressible Flow and Transonic Shock in a Diverging Nozzle , 2009 .

[6]  A multidimensional piston problem for the Euler equations for compressible flow , 2005 .

[7]  Tong Yang A functional integral approach to shock wave solutions of Euler equations with spherical symmetry , 1995 .

[8]  Tong Yang,et al.  Global BV Solutions of Compressible Euler Equations with Spherical Symmetry and Damping , 1998 .

[9]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[10]  Haitao Fan,et al.  Collapsing and Explosion Waves in Phase Transitions with Metastability, Existence, Stability and Related Riemann Problems , 2010 .

[11]  Tai-Ping Liu Nonlinear stability and instability of transonic flows through a nozzle , 1982 .

[12]  Xiao-Biao Lin,et al.  Construction and asymptotic stability of structurally stable internal layer solutions , 2001 .

[13]  Cheng-Hsiung Hsu,et al.  Inviscid and viscous stationary waves of gas flow through contracting–expanding nozzles , 2010 .

[14]  Zhouping Xin,et al.  The existence and monotonicity of a three-dimensional transonic shock in a finite nozzle with axisymmetric exit pressure , 2010 .

[15]  P. A. Thompson,et al.  Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube , 1986, Journal of Fluid Mechanics.

[16]  Haitao Fan,et al.  A Dynamical Systems Approach to Traveling Wave Solutions for Liquid/Vapor Phase Transition , 2012 .

[17]  Konstantina Trivisa,et al.  On the Dynamics of Liquid-Vapor Phase Transition , 2008, SIAM J. Math. Anal..

[18]  B. Deng,et al.  Homoclinic bifurcations with nonhyperbolic equilbria , 1990 .

[19]  Andrea Corli,et al.  The Riemann Problem for Reversible Reactive Flows with Metastability , 2004, SIAM J. Appl. Math..

[20]  Haitao Fan Convergence to Traveling Waves in Two Model Systems Related to the Dynamics of Liquid–Vapor Phase Changes , 2000 .

[21]  Xiao-Biao Lin,et al.  Heteroclinic bifurcation and singularly perturbed boundary value problems , 1990 .

[22]  John Guckenheimer,et al.  Dynamical Systems: C.I.M.E. Lectures, Bressanone, Italy, June 1978 , 1980 .

[23]  Chunjing Xie,et al.  Global subsonic and subsonic-sonic flows through infinitely long nozzles , 2007 .

[24]  M. Slemrod Resolution of the spherical piston problem for compressible isentropic gas dynamics via a self-similar viscous limit , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[25]  Meinolf Sellmann,et al.  Symmetry Breaking , 2001, CP.

[26]  Constantine M. Dafermos,et al.  On Two-Dimensional Sonic-Subsonic Flow , 2007 .

[27]  HAITAO FAN,et al.  On a Model of the Dynamics of Liquid/Vapor Phase Transitions , 2000, SIAM J. Appl. Math..

[28]  Zhouping Xin,et al.  Transonic Shock Problem for the Euler System in a Nozzle , 2009 .

[29]  T. Morrison,et al.  Dynamical Systems , 2021, Nature.

[30]  Cheng-Hsiung Hsu,et al.  Viscous Standing Asymptotic States of Isentropic Compressible Flows Through a Nozzle , 2010 .

[31]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[32]  Gerd E. A. Meier,et al.  Wave splitting in a fluid of large heat capacity , 1987, Journal of Fluid Mechanics.

[33]  D. Amadori,et al.  Global existence of BV solutions and relaxation limit for a model of multiphase reactive flow , 2010 .

[34]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[35]  Jack K. Hale,et al.  Multiple Internal Layer Solutions Generated by Spatially Oscillatory Perturbations , 1999 .

[36]  Arnd Scheel,et al.  Radially Symmetric Patterns of Reaction-Diffusion Systems , 2003 .

[37]  Weishi Liu,et al.  Instability of Low Density Supersonic Waves of a Viscous Isentropic Gas Flow Through a Nozzle , 2012 .

[38]  Kenneth J. Palmer,et al.  Shadowing in Dynamical Systems , 2000 .

[39]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .

[40]  Pavol Brunovský,et al.  Cr-Inclination Theorems for Singularly Perturbed Equations , 1999 .

[41]  Haitao Fan,et al.  Symmetry breaking, ring formation and other phase boundary structures in shock tube experiments on retrograde fluids , 2004, Journal of Fluid Mechanics.

[42]  Stephen Schecter,et al.  Exchange lemmas 2: General Exchange Lemma , 2008 .