Intensity mapping of [C II] emission from early galaxies

The intensity mapping of the [CII] 157.7 $\rm \mu$m fine-structure emission line represents an ideal experiment to probe star formation activity in galaxies, especially in those that are too faint to be individually detected. Here, we investigate the feasibility of such an experiment for $z > 5$ galaxies. We construct the $L_{\rm CII} - M_{\rm h}$ relation from observations and simulations, then generate mock [CII] intensity maps by applying this relation to halo catalogs built from large scale N-body simulations. Maps of the extragalactic far-infrared (FIR) continuum, referred to as "foreground", and CO rotational transition lines and [CI] fine-structure lines referred to as "contamination", are produced as well. We find that, at 316 GHz (corresponding to $z_{\rm CII} = 5$), the mean intensities of the extragalactic FIR continuum, [CII] signal, all CO lines from $J=1$ to 13 and two [CI] lines are $\sim 3\times10^5$ Jy sr$^{-1}$, $\sim 1200$ Jy sr$^{-1}$, $\sim 800$ Jy sr$^{-1}$ and $\sim 100$ Jy sr$^{-1}$, respectively. We discuss a method that allows us to subtract the FIR continuum foreground by removing a spectrally smooth component from each line of sight, and to suppress the CO/[CI] contamination by discarding pixels that are bright in contamination emission. The $z > 5$ [CII] signal comes mainly from halos in the mass range $10^{11-12} \,M_\odot$; as this mass range is narrow, intensity mapping is an ideal experiment to investigate these early galaxies. In principle such signal is accessible to a ground-based telescope with a 6 m aperture, 150 K system temperature, a $128\times128$ pixels FIR camera in 5000 hr total integration time, however it is difficult to perform such an experiment by using currently available telescopes.

[1]  Eli Visbal,et al.  Measuring the 3D clustering of undetected galaxies through cross correlation of their cumulative flux fluctuations from multiple spectral lines , 2010, 1008.3178.

[2]  J. Kamenetzky,et al.  A 205 μm [N ii] MAP OF THE CARINA NEBULA , 2011 .

[3]  R. Neri,et al.  Very extended cold gas, star formation and outflows in the halo of a bright QSO at z>6 , 2014, 1409.4418.

[4]  C. Conselice,et al.  The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field , 2014, 1408.2527.

[5]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[6]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[7]  J. Young,et al.  CO Luminosity Functions for Far-Infrared- and B-Band-selected Galaxies and the First Estimate for ΩHi + H2 , 2002, astro-ph/0209413.

[8]  S. Finkelstein,et al.  New constraints on dust emission and UV attenuation of z=6.5-7.5 galaxies from millimeter observations , 2014, 1407.5793.

[9]  D. Calzetti,et al.  [C ii] 158 μm EMISSION AS A STAR FORMATION TRACER , 2014, 1409.7123.

[10]  S. H. Moseley,et al.  Tracing the first stars with fluctuations of the cosmic infrared background , 2005, Nature.

[11]  A. Stark,et al.  Detection of the 205 μm [N II] Line from the Carina Nebula , 2006, astro-ph/0610636.

[12]  A. Cooray,et al.  INTENSITY MAPPING OF Lyα EMISSION DURING THE EPOCH OF REIONIZATION , 2012, 1205.1493.

[13]  M. Baes,et al.  The reliability of [C ii] as an indicator of the star formation rate , 2011 .

[14]  Testing PDR models against ISO fine structure line data for extragalactic sources , 2010, 1001.4035.

[15]  C. Breuck,et al.  Enhanced [CII] emission in a z = 4.76 submillimetre galaxy , 2011, 1104.5250.

[16]  A. Cimatti,et al.  The deepest Herschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations , 2013, 1303.4436.

[17]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[18]  M. Jarvis,et al.  Star-forming galaxies at z approximate to 8-9 from Hubble Space Telescope/WFC3: implications for reionization , 2011 .

[19]  Y. Wadadekar,et al.  MoMaF: the Mock Map Facility , 2003, astro-ph/0309305.

[20]  A. Omont,et al.  REDSHIFT 6.4 HOST GALAXIES OF 108 SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS , 2013, 1302.1587.

[21]  B. Groves,et al.  VARYING [C ii]/[N ii] LINE RATIOS IN THE INTERACTING SYSTEM BR1202-0725 AT z = 4.7 , 2014, 1401.5076.

[22]  A. Weiss,et al.  Using [C I] to probe the interstellar medium in z ˜ 2.5 sub-millimeter galaxies , 2013, 1307.6593.

[23]  M. Gerin,et al.  Atomic Carbon in Galaxies , 1999, astro-ph/0003252.

[24]  M. Kamionkowski,et al.  Carbon monoxide intensity mapping at moderate redshifts , 2014, 1405.0489.

[25]  Linhua Jiang,et al.  ALMA OBSERVATION OF 158 μm [C ii] LINE AND DUST CONTINUUM OF A Z = 7 NORMALLY STAR-FORMING GALAXY IN THE EPOCH OF REIONIZATION , 2014, 1405.5387.

[26]  J. Young,et al.  CO LUMINOSITY FUNCTIONS FOR FIR AND B-BAND SELECTED GALAXIES AND THE FIRST ESTIMATE FOR ΩHI+H2 , 2002 .

[27]  A. Cimatti,et al.  The Herschel* PEP/HerMES luminosity function - I. Probing the evolution of PACS selected Galaxies to z ≃ 4 , 2013, 1302.5209.

[28]  M. Gerin,et al.  Are 12CO lines good indicators of the star formation rate in galaxies , 2009, 0906.2975.

[29]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[30]  David Alonso,et al.  Blind foreground subtraction for intensity mapping experiments , 2014, 1409.8667.

[31]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999 .

[32]  J. Dunlop,et al.  CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION , 2012, 1206.0735.

[33]  D. H. Hughes,et al.  GAS AND DUST IN A SUBMILLIMETER GALAXY AT z = 4.24 FROM THE HERSCHEL ATLAS , 2011, 1107.2924.

[34]  Rebecca J. Williams,et al.  ALMA resolves turbulent, rotating [CII] emission in a young starburst galaxy at z = 4.8 , 2014, 1404.2295.

[35]  G. Gavazzi,et al.  [CII] at 158 mu m as a star formation tracer in late-type galaxies , 2002, astro-ph/0201471.

[36]  R. Sheth,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[37]  C. De Breuck,et al.  Strong (CII) emission at high redshift , 2009, 0904.3793.

[38]  O. Dor'e,et al.  Where stars form and live at high redshift: clues from the infrared , 2012, 1201.0546.

[39]  Charles M. Bradford,et al.  MEASURING GALAXY CLUSTERING AND THE EVOLUTION OF [C ii] MEAN INTENSITY WITH FAR-IR LINE INTENSITY MAPPING DURING 0.5 < z < 1.5 , 2014, 1407.4860.

[40]  Asantha Cooray,et al.  PROBING REIONIZATION WITH INTENSITY MAPPING OF MOLECULAR AND FINE-STRUCTURE LINES , 2011, 1101.2892.

[41]  K. Nagamine,et al.  Steep faint-end slopes of galaxy mass and luminosity functions at z≥ 6 and the implications for reionization , 2011, 1104.2345.

[42]  R. Somerville,et al.  The nature of the ISM in galaxies during the star-formation activity peak of the Universe , 2013, 1310.1476.

[43]  A. Ferrara,et al.  Far-infrared line emission from high-redshift galaxies , 2013, 1305.2202.

[44]  M. Meneghetti,et al.  Resolved [CII] emission in a lensed quasar at z = 4.4 , 2012, 1205.4035.

[45]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[46]  P. P. van der Werf,et al.  STAR FORMATION RELATIONS AND CO SPECTRAL LINE ENERGY DISTRIBUTIONS ACROSS THE J-LADDER AND REDSHIFT , 2014, 1407.4400.

[47]  L. Infante,et al.  SEARCH FOR [C ii] EMISSION IN z = 6.5–11 STAR-FORMING GALAXIES , 2014, 1401.3228.

[48]  Hy Trac,et al.  Demonstrating the feasibility of line intensity mapping using mock data of galaxy clustering from simulations , 2011, 1104.4809.

[49]  F. Walter,et al.  A SURVEY OF ATOMIC CARBON AT HIGH REDSHIFT , 2011, 1101.4027.

[50]  The H+ region contribution to [C ii] 158-μm emission , 2006, astro-ph/0604212.

[51]  C. Leitherer,et al.  A LIBRARY OF THEORETICAL ULTRAVIOLET SPECTRA OF MASSIVE, HOT STARS FOR EVOLUTIONARY SYNTHESIS , 2010, 1006.5624.

[52]  R. Bouwens,et al.  UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.

[53]  C. Matt Bradford,et al.  INTENSITY MAPPING OF THE [C ii] FINE STRUCTURE LINE DURING THE EPOCH OF REIONIZATION , 2011, 1107.3553.

[54]  S. Zaroubi,et al.  Foreground simulations for the LOFAR-epoch of reionization experiment , 2008, 0804.1130.

[55]  D. Iono,et al.  AN INTENSELY STAR-FORMING GALAXY AT z ∼ 7 WITH LOW DUST AND METAL CONTENT REVEALED BY DEEP ALMA AND HST OBSERVATIONS , 2013, 1306.3572.

[56]  James Aguirre,et al.  INTENSITY MAPPING WITH CARBON MONOXIDE EMISSION LINES AND THE REDSHIFTED 21 cm LINE , 2011, 1104.4800.

[57]  B. Magnelli,et al.  The 0.4 < z < 1.3 star formation history of the Universe as viewed in the far-infrared , 2009, 0901.1543.

[58]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[59]  First detection of [CII]158 μm at high redshift : vigorous star formation in the early universe , 2005, astro-ph/0508064.

[60]  Max Tegmark,et al.  21 cm Tomography with Foregrounds , 2006 .

[61]  O. Doré,et al.  INTENSITY MAPPING ACROSS COSMIC TIMES WITH THE Lyα LINE , 2013, 1309.2295.

[62]  Searching for the reionization sources , 2007, astro-ph/0703771.

[63]  V. D’Odorico,et al.  Simulating cosmic metal enrichment by the first galaxies , 2014, 1403.1261.

[64]  Xiaohui Fan,et al.  STAR FORMATION AND GAS KINEMATICS OF QUASAR HOST GALAXIES AT z ∼ 6: NEW INSIGHTS FROM ALMA , 2013, 1302.4154.

[65]  Yan Gong,et al.  PROBING THE PRE-REIONIZATION EPOCH WITH MOLECULAR HYDROGEN INTENSITY MAPPING , 2012, 1212.2964.

[66]  Liverpool John Moores University,et al.  DETECTION OF ATOMIC CARBON [C ii] 158 μm AND DUST EMISSION FROM A z = 7.1 QUASAR HOST GALAXY , 2012, 1203.5844.

[67]  F. Mannucci,et al.  A fundamental relation between mass, SFR and metallicity in local and high redshift galaxies , 2010, 1005.0006.

[68]  M. Franx,et al.  LOWER-LUMINOSITY GALAXIES COULD REIONIZE THE UNIVERSE: VERY STEEP FAINT-END SLOPES TO THE UV LUMINOSITY FUNCTIONS AT z ⩾ 5–8 FROM THE HUDF09 WFC3/IR OBSERVATIONS , 2011, 1105.2038.

[69]  J. Dunlop,et al.  Simulating the assembly of galaxies at redshifts z = 6–12 , 2012, 1211.1034.

[70]  E. Pellegrini,et al.  The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types , 2014, 1402.4075.

[71]  Neutral atomic carbon in centers of galaxies , 2001, astro-ph/0112187.

[72]  R. Salvaterra,et al.  Simulating high‐redshift galaxies , 2010, 1003.3873.

[73]  R. Maiolino,et al.  Metallicity diagnostics with infrared fine-structure lines , 2010, 1012.2471.

[74]  Claus Leitherer,et al.  Optimization of Starburst99 for Intermediate-Age and Old Stellar Populations , 2004, astro-ph/0412491.

[75]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.