The solution space of the Einstein’s vacuum field equations for the case of five-dimensional Bianchi Type I (Type 4A1)
暂无分享,去创建一个
[1] P. Terzis. Faithful representations of Lie algebras and Homogeneous Spaces , 2013, 1304.7894.
[2] S. Siklos. Exact Space-Times in Einstein's General Relativity, by Jerry B. Griffiths and Jiří Podolský , 2012 .
[3] T. Christodoulakis,et al. Lie algebra automorphisms as Lie-point symmetries and the solution space for Bianchi type I, II, IV, V vacuum geometries , 2010, 1007.1561.
[4] K. Lake. Exact Space-Times in Einstein's General Relativity , 2010 .
[5] T. Christodoulakis,et al. The general solution of Bianchi type V I Ih vacuum cosmology , 2008, 0803.3710.
[6] G. Papadopoulos. On the essential constants in Riemannian geometries , 2005, gr-qc/0503096.
[7] T. Christodoulakis,et al. The general solution of Bianchi type III vacuum cosmology , 2004, gr-qc/0607063.
[8] T. Christodoulakis,et al. Automorphisms and a cartography of the solution space for vacuum Bianchi cosmologies: The Type III case , 2004, gr-qc/0410123.
[9] P. Negi,et al. Exact Solutions of Einstein's Field Equations , 2004, gr-qc/0401024.
[10] S. Hervik,et al. Essential constants for spatially homogeneous Ricci-flat manifolds of dimension 4+1 , 2003, gr-qc/0311025.
[11] Portsmouth,et al. Braneworld cosmological models with anisotropy , 2003, hep-th/0308158.
[12] Christopher C. Gerry,et al. Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements , 2003 .
[13] A. Dimakis,et al. Automorphisms of real four-dimensional Lie algebras and the invariant characterization of homogeneous 4-spaces , 2002, gr-qc/0209042.
[14] S. Hervik. Vacuum plane waves in 4+1 D and exact solutions to Einstein's equations in 3+1 D , 2002, gr-qc/0210080.
[15] S. Hervik. Multidimensional cosmology: spatially homogeneous models of dimension 4 + 1 , 2002, gr-qc/0207079.
[16] P. Wesson,et al. Cosmological implications of a nonseparable 5D solution of the vacuum Einstein field equations , 2001, gr-qc/0105112.
[17] G. Kofinas,et al. Time-dependent automorphism inducing diffeomorphisms in vacuum Bianchi cosmologies and the complete closed form solutions for types II and V , 2000, gr-qc/0008050.
[18] G. Kofinas,et al. Time-Dependent Automorphism Inducing Diffeomorphisms and the Complete Closed Form Solutions of Bianchi Types II & V Vacuum Cosmologies , 2000 .
[19] K. Maeda,et al. The Einstein Equations on the 3-BRANE World:. a Window to Extra Dimensions , 1999, gr-qc/9910076.
[20] L. Randall,et al. A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.
[21] Hongya Liu,et al. Cosmological solutions and their effective properties of matter in Kaluza-Klein theory , 1994 .
[22] D. McManus. Five‐dimensional cosmological models in induced matter theory , 1994 .
[23] M. Henneaux,et al. Bianchi cosmological models and gauge symmetries , 1993, gr-qc/9301001.
[24] M Henneaux,et al. Bianchi cosmological models and gauge symmetries , 1993 .
[25] P. Wesson. The Properties of Matter in Kaluza-Klein Cosmology , 1992 .
[26] A. Ashtekar,et al. Bianchi cosmologies: the role of spatial topology , 1991 .
[27] M. Duff,et al. Semiclassical quantization of the supermembrane , 1988 .
[28] Halpern. Behavior of homogeneous five-dimensional space-times. , 1986, Physical review. D, Particles and fields.
[29] D. Lorenz-petzold. Higher-dimensional Brans-Dicke cosmologies , 1985 .
[30] D. Lorenz-petzold. Exact five-dimensional cosmological solutions , 1985 .
[31] D. Lorenz-petzold. Higher-dimensional perfect fluid cosmologies , 1985 .
[32] D. Lorentz-Petzold. Nontrivial anisotropic supergravity cosmological solution , 1985 .
[33] Lorenz-Petzold. Higher-dimensional extensions of Bianchi type-I cosmologies. , 1985, Physical review. D, Particles and fields.
[34] D. Lorenz-petzold. Anisotropic supergravity cosmologies , 1985 .
[35] D. Lorenz-Petzold. Kaluza-Klein-Bianchi-Kantowski-Sachs cosmologies , 1984 .
[36] John H. Schwarz,et al. Anomaly cancellations in supersymmetric D=10 gauge theory and superstring theory , 1984 .
[37] D. Lorenz-petzold. Higher-dimensional cosmologies , 1984 .
[38] S. Detweiler,et al. Where has the fifth dimension gone , 1980 .
[39] P. Forgács,et al. On the influence of extra dimensions on the homogeneous isotropic universe , 1979 .
[40] R. Jantzen. The dynamical degrees of freedom in spatially homogeneous cosmology , 1979 .
[41] Jiří Patera,et al. Subalgebras of real three‐ and four‐dimensional Lie algebras , 1977 .
[42] M. P. Ryan,et al. Homogeneous Relativistic Cosmologies , 1975 .
[43] Joel Scherk,et al. Dual Models for Non-Hadrons , 1974 .
[44] L. Susskind. Structure of hadrons implied by duality , 1970 .
[45] Y. Nambu. QUARK MODEL AND THE FACTORIZATION OF THE VENEZIANO AMPLITUDE. , 1970 .
[46] G. Ellis,et al. A class of homogeneous cosmological models , 1969 .
[47] W. Israel. Singular hypersurfaces and thin shells in general relativity , 1966 .
[48] W. Kundt. The plane-fronted gravitational waves , 1961 .
[49] Stanley Deser,et al. Dynamical Structure and Definition of Energy in General Relativity , 1959 .
[50] W. Heisenberg,et al. Die beobachtbaren Größen in der Theorie der Elementarteilchen. III , 1943 .
[51] Werner Heisenberg,et al. Die „beobachtbaren Größen“ in der Theorie der Elementarteilchen , 1943 .
[52] John Archibald Wheeler,et al. On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure , 1937 .
[53] O. Klein,et al. Quantentheorie und fünfdimensionale Relativitätstheorie , 1926 .
[54] E. Kasner. An algebraic solution of the Einstein equations , 1925 .
[55] E. Kasner. Geometrical theorems on Einstein's cosmological equations , 1921 .
[56] Theodor Kaluza. On the Problem of Unity in Physics , 1921 .