The solution space of the Einstein’s vacuum field equations for the case of five-dimensional Bianchi Type I (Type 4A1)

We consider the 4+1 Einstein’s field equations (EFE’s) in vacuum, simplified by the assumption that there is a 4D sub-manifold on which an isometry group of dimension four acts simply transitive. In particular, we consider the Abelian group Type 4A1; and thus the emerging homogeneous sub-space is flat. Through the use of coordinate transformations that preserve the sub-manifold’s manifest homogeneity, a coordinate system is chosen in which the shift vector is zero. The resulting equations remain form invariant under the action of the constant Automorphisms group. This group is used in order to simplify the equations and obtain their complete solution space which consists of seven families corresponding to 21 distinct solutions. Apart form the Kasner type all the other solutions found are, to the best of our knowledge, new. Some of them correspond to cosmological solutions, others seem to depend on some spatial coordinate and there are also pp-wave solutions.

[1]  P. Terzis Faithful representations of Lie algebras and Homogeneous Spaces , 2013, 1304.7894.

[2]  S. Siklos Exact Space-Times in Einstein's General Relativity, by Jerry B. Griffiths and Jiří Podolský , 2012 .

[3]  T. Christodoulakis,et al.  Lie algebra automorphisms as Lie-point symmetries and the solution space for Bianchi type I, II, IV, V vacuum geometries , 2010, 1007.1561.

[4]  K. Lake Exact Space-Times in Einstein's General Relativity , 2010 .

[5]  T. Christodoulakis,et al.  The general solution of Bianchi type V I Ih vacuum cosmology , 2008, 0803.3710.

[6]  G. Papadopoulos On the essential constants in Riemannian geometries , 2005, gr-qc/0503096.

[7]  T. Christodoulakis,et al.  The general solution of Bianchi type III vacuum cosmology , 2004, gr-qc/0607063.

[8]  T. Christodoulakis,et al.  Automorphisms and a cartography of the solution space for vacuum Bianchi cosmologies: The Type III case , 2004, gr-qc/0410123.

[9]  P. Negi,et al.  Exact Solutions of Einstein's Field Equations , 2004, gr-qc/0401024.

[10]  S. Hervik,et al.  Essential constants for spatially homogeneous Ricci-flat manifolds of dimension 4+1 , 2003, gr-qc/0311025.

[11]  Portsmouth,et al.  Braneworld cosmological models with anisotropy , 2003, hep-th/0308158.

[12]  Christopher C. Gerry,et al.  Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements , 2003 .

[13]  A. Dimakis,et al.  Automorphisms of real four-dimensional Lie algebras and the invariant characterization of homogeneous 4-spaces , 2002, gr-qc/0209042.

[14]  S. Hervik Vacuum plane waves in 4+1 D and exact solutions to Einstein's equations in 3+1 D , 2002, gr-qc/0210080.

[15]  S. Hervik Multidimensional cosmology: spatially homogeneous models of dimension 4 + 1 , 2002, gr-qc/0207079.

[16]  P. Wesson,et al.  Cosmological implications of a nonseparable 5D solution of the vacuum Einstein field equations , 2001, gr-qc/0105112.

[17]  G. Kofinas,et al.  Time-dependent automorphism inducing diffeomorphisms in vacuum Bianchi cosmologies and the complete closed form solutions for types II and V , 2000, gr-qc/0008050.

[18]  G. Kofinas,et al.  Time-Dependent Automorphism Inducing Diffeomorphisms and the Complete Closed Form Solutions of Bianchi Types II & V Vacuum Cosmologies , 2000 .

[19]  K. Maeda,et al.  The Einstein Equations on the 3-BRANE World:. a Window to Extra Dimensions , 1999, gr-qc/9910076.

[20]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[21]  Hongya Liu,et al.  Cosmological solutions and their effective properties of matter in Kaluza-Klein theory , 1994 .

[22]  D. McManus Five‐dimensional cosmological models in induced matter theory , 1994 .

[23]  M. Henneaux,et al.  Bianchi cosmological models and gauge symmetries , 1993, gr-qc/9301001.

[24]  M Henneaux,et al.  Bianchi cosmological models and gauge symmetries , 1993 .

[25]  P. Wesson The Properties of Matter in Kaluza-Klein Cosmology , 1992 .

[26]  A. Ashtekar,et al.  Bianchi cosmologies: the role of spatial topology , 1991 .

[27]  M. Duff,et al.  Semiclassical quantization of the supermembrane , 1988 .

[28]  Halpern Behavior of homogeneous five-dimensional space-times. , 1986, Physical review. D, Particles and fields.

[29]  D. Lorenz-petzold Higher-dimensional Brans-Dicke cosmologies , 1985 .

[30]  D. Lorenz-petzold Exact five-dimensional cosmological solutions , 1985 .

[31]  D. Lorenz-petzold Higher-dimensional perfect fluid cosmologies , 1985 .

[32]  D. Lorentz-Petzold Nontrivial anisotropic supergravity cosmological solution , 1985 .

[33]  Lorenz-Petzold Higher-dimensional extensions of Bianchi type-I cosmologies. , 1985, Physical review. D, Particles and fields.

[34]  D. Lorenz-petzold Anisotropic supergravity cosmologies , 1985 .

[35]  D. Lorenz-Petzold Kaluza-Klein-Bianchi-Kantowski-Sachs cosmologies , 1984 .

[36]  John H. Schwarz,et al.  Anomaly cancellations in supersymmetric D=10 gauge theory and superstring theory , 1984 .

[37]  D. Lorenz-petzold Higher-dimensional cosmologies , 1984 .

[38]  S. Detweiler,et al.  Where has the fifth dimension gone , 1980 .

[39]  P. Forgács,et al.  On the influence of extra dimensions on the homogeneous isotropic universe , 1979 .

[40]  R. Jantzen The dynamical degrees of freedom in spatially homogeneous cosmology , 1979 .

[41]  Jiří Patera,et al.  Subalgebras of real three‐ and four‐dimensional Lie algebras , 1977 .

[42]  M. P. Ryan,et al.  Homogeneous Relativistic Cosmologies , 1975 .

[43]  Joel Scherk,et al.  Dual Models for Non-Hadrons , 1974 .

[44]  L. Susskind Structure of hadrons implied by duality , 1970 .

[45]  Y. Nambu QUARK MODEL AND THE FACTORIZATION OF THE VENEZIANO AMPLITUDE. , 1970 .

[46]  G. Ellis,et al.  A class of homogeneous cosmological models , 1969 .

[47]  W. Israel Singular hypersurfaces and thin shells in general relativity , 1966 .

[48]  W. Kundt The plane-fronted gravitational waves , 1961 .

[49]  Stanley Deser,et al.  Dynamical Structure and Definition of Energy in General Relativity , 1959 .

[50]  W. Heisenberg,et al.  Die beobachtbaren Größen in der Theorie der Elementarteilchen. III , 1943 .

[51]  Werner Heisenberg,et al.  Die „beobachtbaren Größen“ in der Theorie der Elementarteilchen , 1943 .

[52]  John Archibald Wheeler,et al.  On the Mathematical Description of Light Nuclei by the Method of Resonating Group Structure , 1937 .

[53]  O. Klein,et al.  Quantentheorie und fünfdimensionale Relativitätstheorie , 1926 .

[54]  E. Kasner An algebraic solution of the Einstein equations , 1925 .

[55]  E. Kasner Geometrical theorems on Einstein's cosmological equations , 1921 .

[56]  Theodor Kaluza On the Problem of Unity in Physics , 1921 .