Volume-based large dynamic graph analysis supported by evolution provenance

We present an approach for the visualization and interactive analysis of dynamic graphs that contain a large number of time steps. A specific focus is put on the support of analyzing temporal aspects in the data. Central to our approach is a static, volumetric representation of the dynamic graph based on the concept of space-time cubes that we create by stacking the adjacency matrices of all time steps. The use of GPU-accelerated volume rendering techniques allows us to render this representation interactively. We identified four classes of analytics methods as being important for the analysis of large and complex graph data, which we discuss in detail: data views, aggregation and filtering, comparison, and evolution provenance. Implementations of the respective methods are presented in an integrated application, enabling interactive exploration and analysis of large graphs. We demonstrate the applicability, usefulness, and scalability of our approach by presenting two examples for analyzing dynamic graphs. Furthermore, we let visualization experts evaluate our analytics approach.

[1]  Melanie Herschel,et al.  A survey on provenance: What for? What form? What from? , 2017, The VLDB Journal.

[2]  Michael Burch,et al.  Clustering for Stacked Edge Splatting , 2018, VMV.

[3]  S. Sloan An algorithm for profile and wavefront reduction of sparse matrices , 1986 .

[4]  Han-Wei Shen,et al.  Multi-variate, Time Varying, and Comparative Visualization with Contextual Cues , 2006, IEEE Transactions on Visualization and Computer Graphics.

[5]  Michael Burch,et al.  Rapid Serial Visual Presentation in dynamic graph visualization , 2012, 2012 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).

[6]  Michael Burch,et al.  Volume-Based Large Dynamic Graph Analytics , 2018, 2018 22nd International Conference Information Visualisation (IV).

[7]  Jean-Daniel Fekete,et al.  Visualizing dynamic networks with matrix cubes , 2014, CHI.

[8]  Michael Burch,et al.  Visual Adjacency Lists for Dynamic Graphs , 2014, IEEE Transactions on Visualization and Computer Graphics.

[9]  Kozo Sugiyama,et al.  Layout Adjustment and the Mental Map , 1995, J. Vis. Lang. Comput..

[10]  Thomas Ertl,et al.  Visualization of Temporal Similarity in Field Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[11]  Ronie Salgado,et al.  CuboidMatrix: Exploring Dynamic Structural Connections in Software Components Using Space-Time Cube , 2016, 2016 IEEE Working Conference on Software Visualization (VISSOFT).

[12]  Cláudio T. Silva,et al.  Using Provenance to Support Real-Time Collaborative Design of Workflows , 2008, IPAW.

[13]  Tova Milo,et al.  REACT: Context-Sensitive Recommendations for Data Analysis , 2016, SIGMOD Conference.

[14]  Melanie Herschel,et al.  Provenance-based Recommendations for Visual Data Exploration , 2017, TaPP.

[15]  Alexander Lex,et al.  From Visual Exploration to Storytelling and Back Again , 2016, bioRxiv.

[16]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[17]  Michael Burch,et al.  Visualizing a Sequence of a Thousand Graphs (or Even More) , 2017, Comput. Graph. Forum.

[18]  Daniel W. Archambault,et al.  Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs , 2011, IEEE Transactions on Visualization and Computer Graphics.

[19]  Ian P. King,et al.  An automatic reordering scheme for simultaneous equations derived from network systems , 1970 .

[20]  Michael Burch,et al.  A Taxonomy and Survey of Dynamic Graph Visualization , 2017, Comput. Graph. Forum.

[21]  Jean-Paul Balabanian Temporal Styles for Time-Varying Volume Data , 2008 .

[22]  Simon Stegmaier,et al.  A simple and flexible volume rendering framework for graphics-hardware-based raycasting , 2005, Fourth International Workshop on Volume Graphics, 2005..

[23]  Daniel A. Keim,et al.  Provenance-Based Visual Data Exploration with EVLIN , 2018, EDBT.

[24]  Jeremy G. Siek,et al.  The Boost Graph Library - User Guide and Reference Manual , 2001, C++ in-depth series.

[25]  Jean-Daniel Fekete,et al.  Matrix Reordering Methods for Table and Network Visualization , 2016, Comput. Graph. Forum.

[26]  Niklas Elmqvist,et al.  TimeMatrix: Analyzing Temporal Social Networks Using Interactive Matrix-Based Visualizations , 2010, Int. J. Hum. Comput. Interact..

[27]  Jimeng Sun,et al.  MatrixFlow: Temporal Network Visual Analytics to Track Symptom Evolution during Disease Progression , 2012, AMIA.

[28]  Jarke J. van Wijk,et al.  Dynamic Network Visualization withExtended Massive Sequence Views , 2014, IEEE Transactions on Visualization and Computer Graphics.

[29]  Jarke J. van Wijk,et al.  Reducing Snapshots to Points: A Visual Analytics Approach to Dynamic Network Exploration , 2016, IEEE Transactions on Visualization and Computer Graphics.

[30]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[31]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[32]  Cláudio T. Silva,et al.  VisTrails: visualization meets data management , 2006, SIGMOD Conference.

[33]  Michael Burch,et al.  Parallel Edge Splatting for Scalable Dynamic Graph Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[34]  M. Sheelagh T. Carpendale,et al.  A Descriptive Framework for Temporal Data Visualizations Based on Generalized Space‐Time Cubes , 2017, Comput. Graph. Forum.

[35]  Philippe Castagliola,et al.  On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..

[36]  Han-Wei Shen,et al.  Chronovolumes: A Direct Rendering Technique for Visualizing Time-Varying Data , 2003, VG.

[37]  John Amanatides,et al.  A Fast Voxel Traversal Algorithm for Ray Tracing , 1987, Eurographics.

[38]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[39]  Benjamin Schmidt,et al.  A Matrix-Based Visualization for Exploring Dynamic Compound Digraphs , 2013, 2013 17th International Conference on Information Visualisation.

[40]  Jean-Daniel Fekete,et al.  Small MultiPiles: Piling Time to Explore Temporal Patterns in Dynamic Networks , 2015, Comput. Graph. Forum.

[41]  Barbara Tversky,et al.  Animation: can it facilitate? , 2002, Int. J. Hum. Comput. Stud..

[42]  Timo Ropinski,et al.  Advanced illumination techniques for GPU-based volume raycasting , 2008, SIGGRAPH 2008.