Stick balancing: On-off intermittency and survival times

The ∞uctuations in the vertical displacement angle of a stick balanced at the flngertip exhibit on-ofi intermitency. However, even a skilled balancer cannot indeflnitely maintain a stick balanced at their flngertip. The survival function for stick balancing, P(tesc > t), is shown to have the form of a Weibul function, exp(i‚t) fl , where ‚ is a constant and fl > 1. The measured survival function can be reproduced by a stochastic delayed discrete map possessing only unstable solutions. These observations emphasize the importance of state{dependent, or paametric, noise in this balancing task.

[1]  F. J. Rubia,et al.  ANALYSIS OF THE BEHAVIOR OF A RANDOM NONLINEAR DELAY DISCRETE EQUATION , 1996 .

[2]  J. A. Scott Kelso,et al.  Dynamic Encounters: Long Memory During Functional Stabilization , 1999 .

[3]  J. Milton,et al.  Noise-induced transitions in human postural sway. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[5]  G. Haller,et al.  Micro-chaos in digital control , 1996 .

[6]  Gábor Stépán,et al.  Microchaotic Motion of Digitally Controlled Machines , 1998 .

[7]  John G. Milton,et al.  Delays, Scaling and the Acquisition of Motor Skill , 2003 .

[8]  P. Foo,et al.  Functional stabilization of unstable fixed points: human pole balancing using time-to-balance information. , 2000, Journal of experimental psychology. Human perception and performance.

[9]  Stefan Schaal,et al.  Forward models in visuomotor control. , 2002, Journal of neurophysiology.

[10]  Thomas M. Antonsen,et al.  On-off intermittency: power spectrum and fractal properties of time series , 1996 .

[11]  F. Javier de la Rubia,et al.  Numerical analysis of transient behavior in the discrete random logistic equation with delay , 1995 .

[12]  Gábor Stépán,et al.  Balancing with Reflex Delay , 2000 .

[13]  A. Damasio The Feeling of What Happens: Body and Emotion in the Making of Consciousness , 1999 .

[14]  Mary E. Landry,et al.  Dynamics of an Inverted Pendulum with Delayed Feedback Control , 2005, SIAM J. Appl. Dyn. Syst..

[15]  Michael C. Mackey,et al.  Neural ensemble coding and statistical periodicity: Speculations on the operation of the mind's eye , 2000, Journal of Physiology-Paris.

[16]  John G. Milton,et al.  Controlling neurological disease at the edge of instability , 2004 .

[17]  LAWRENCE STARK,et al.  Pupil Unrest: An Example of Noise in a Biological Servomechanism , 1958, Nature.

[18]  Henry C. Tuckwell,et al.  Stochastic processes in the neurosciences , 1989 .

[19]  Frances S. Chance,et al.  Effects of synaptic noise and filtering on the frequency response of spiking neurons. , 2001, Physical review letters.

[20]  G. Stépán Retarded dynamical systems : stability and characteristic functions , 1989 .

[21]  K Vasilakos,et al.  Effects of noise on a delayed visual feedback system. , 1993, Journal of theoretical biology.

[22]  A. Longtin,et al.  Small delay approximation of stochastic delay differential equations , 1999 .

[23]  Milton,et al.  Delayed random walks. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Juan Luis Cabrera,et al.  Human stick balancing: tuning Lèvy flights to improve balance control. , 2004, Chaos.

[25]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[26]  M C Mackey,et al.  A deterministic approach to survival statistics , 1990, Journal of mathematical biology.

[27]  R. Mantegna,et al.  Scaling behaviour in the dynamics of an economic index , 1995, Nature.

[28]  D. Acheson,et al.  From Calculus to Chaos: An Introduction to Dynamics , 1998 .

[29]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[30]  Spiegel,et al.  On-off intermittency: A mechanism for bursting. , 1993, Physical review letters.

[31]  A. Opstal Dynamic Patterns: The Self-Organization of Brain and Behavior , 1995 .

[32]  Platt,et al.  Characterization of on-off intermittency. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Luc Moreau,et al.  Balancing at the border of instability. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Longtin,et al.  Noise and critical behavior of the pupil light reflex at oscillation onset. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[35]  M. Rosenblum,et al.  On-off intemittency phenomena in a pendulum with a randomly vibrating suspension axis , 1998 .

[36]  A A Verveen,et al.  Membrane noise. , 1974, Progress in biophysics and molecular biology.

[37]  John L. Bogdanoff,et al.  Influence on the Behavior of a Linear Dynamical System of Some Imposed Rapid Motions of Small Amplitude , 1962 .

[38]  P. Rapp,et al.  Dynamics of spontaneous neural activity in the simian motor cortex: The dimension of chaotic neurons , 1985 .

[39]  J A Kelso,et al.  Parametric stabilization of biological coordination: a theoretical model , 2000, Journal of biological physics.

[40]  S. Havlin,et al.  Scale-invariant correlations in the biological and social sciences , 1998 .

[41]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[42]  Frank Moss,et al.  STOCHASTIC RESONANCE: TUTORIAL AND UPDATE , 1994 .

[43]  R. Weron Levy-stable distributions revisited: tail index > 2 does not exclude the Levy-stable regime , 2001, cond-mat/0103256.

[44]  John G Milton,et al.  On-off intermittency in a human balancing task. , 2002, Physical review letters.

[45]  M. Mackey,et al.  Solution moment stability in stochastic differential delay equations. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  J. L. Bogdanoff,et al.  Experiments with an Inverted Pendulum Subject to Random Parametric Excitation , 1965 .