Spontaneous resolution of chiral polyoxometalate-based compounds consisting of 3D chiral inorganic skeletons assembled from different helical units.

Four enantiomerically pure 3D chiral POM-based compounds, [Ni(2)(bbi)(2)(H(2)O)(4)V(4)O(12)]2 H(2)O (1 a and 1 b) and [Co(bbi)(H(2)O)V(2)O(6)] (2 a and 2 b) (bbi=1,1'-(1,4-butanediyl)bisimidazole) based on the achiral ligand, different vanadate chains, and different metal centers have been synthesized by hydrothermal methods. Single-crystal X-ray diffraction analyses revealed that 1 a and 1 b, and 2 a and 2 b, respectively, are enantiomers. In 1 a and 1 b two kinds of vanadate chains with different screw axes link Ni cations to generate 3D chiral inorganic skeletons, which are connected by the achiral bbi ligands to form complicated 3D 3,4-connected chiral self-penetrating frameworks with (7(2)8)(7(2)8(2)9(2))(7(3)8(2)10) topology. They represent the first examples of chiral self-penetrating frameworks known for polyoxometalate (POM) systems. Contrary to 1 a and 1 b, in 2 a and 2 b the vanadate chains link Co(II) cations to generate 3D chiral inorganic skeletons, which are assembled from two kinds of heterometallic helical units of opposite chirality along the c axes. The chiral inorganic skeletons are connected by bbi to form 3D 3,4-connected chiral POM-based frameworks with (6(2)8)(2)(6(2)8(2)10(2)) topology. It is believed that the asymmetrical coordination modes of the metal cations in 1 a-2 b generate the initial chiral centers, and that the formation of the various helical units and the hydrogen bond interactions are responsible for preservation of the chirality and spontaneous resolution when the chirality is extended into the homochiral 3D-networks. This is the first known report of chiral POM-based compounds consisting of 3D chiral inorganic skeletons being obtained by spontaneous resolution upon crystallization in the absence of any chiral source, which may provide a rational strategy for synthesis of chiral POM-based compounds by using achiral ligands and POM helical units.

[1]  J. Vittal,et al.  Molecular Fabric Structure Formed by the 1D Coordination Polymer, [Pb(bpe)(O2CCH3)(O2CCF3)] , 2008 .

[2]  E. Wang,et al.  Supramolecular isomerism with polythreaded topology based on [Mo8O26]4- isomers. , 2008, Inorganic chemistry.

[3]  Dunru Zhu,et al.  Three new organically templated 1D, 2D, and 3D vanadates: synthesis, crystal structures, and characterizations. , 2008, Inorganic chemistry.

[4]  E. Wang,et al.  Spontaneous resolution of a 3D chiral polyoxometalate-based polythreaded framework consisting of an achiral ligand. , 2008, Chemical communications.

[5]  C. Hill,et al.  Breaking symmetry: spontaneous resolution of a polyoxometalate. , 2007, Chemistry.

[6]  E. Wang,et al.  An unprecedented (6,8)-connected self-penetrating network based on two distinct zinc clusters. , 2007, Chemical communications.

[7]  X. Bu,et al.  Manganese and magnesium homochiral materials: decoration of honeycomb channels with homochiral chains. , 2007, Journal of the American Chemical Society.

[8]  Leroy Cronin,et al.  Modular assembly of a functional polyoxometalate-based open framework constructed from unsupported AgI--AgI interactions. , 2007, Angewandte Chemie.

[9]  X. Bu,et al.  Comparative study of homochiral and racemic chiral metal-organic frameworks built from camphoric acid , 2007 .

[10]  X. Bu,et al.  Chiralization of diamond nets: stretchable helices and chiral and achiral nets with nearly identical unit cells. , 2007, Angewandte Chemie.

[11]  A. Cheetham,et al.  Effect of mixing of metal cations on the topology of metal oxide networks. , 2007, Angewandte Chemie.

[12]  Dong Guo,et al.  Chirality Transfer through Helical Motifs in Coordination Compounds , 2007 .

[13]  Xinlong Wang,et al.  Chiral polyoxometalate-induced enantiomerically 3D architectures: a new route for synthesis of high-dimensional chiral compounds. , 2007, Journal of the American Chemical Society.

[14]  C. Gómez‐García,et al.  High-dimensional assembly depending on polyoxoanion templates, metal ion coordination geometries, and a flexible bis(imidazole) ligand. , 2007, Inorganic chemistry.

[15]  H. Lee,et al.  Conformational effect of 2,6-bis(imidazol-1-yl)pyridine on the self-assembly of 1D coordination chains: spontaneous resolution, supramolecular isomerism, and structural transformation. , 2007, Inorganic chemistry.

[16]  D. Amabilino,et al.  Spontaneous resolution, whence and whither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supra-molecular polymers and assemblies. , 2007, Chemical Society reviews.

[17]  Guanggang Gao,et al.  Unprecedented eight-connected self-catenated network based on heterometallic {Cu4V4O12} clusters as nodes. , 2007, Inorganic chemistry.

[18]  J. Tarascon,et al.  Mixed-valence li/fe-based metal-organic frameworks with both reversible redox and sorption properties. , 2007, Angewandte Chemie.

[19]  L. Cronin,et al.  Engineering porosity in a chiral heteropolyoxometalate-based framework: the supramolecular effect of benzenetricarboxylic acid. , 2007, Chemical communications.

[20]  Russell K. Feller,et al.  Structural diversity and chemical trends in hybrid inorganic-organic framework materials. , 2006, Chemical communications.

[21]  L. Cronin,et al.  Linking chiral clusters with molybdate building blocks: from homochiral helical supramolecular arrays to coordination helices. , 2006, Chemistry, an Asian journal.

[22]  Cai‐Feng Wang,et al.  Chiral molecule-based ferrimagnets with helical structures. , 2006, Inorganic chemistry.

[23]  M. Mirzaei,et al.  Triprolinium 12-phosphomolybdate : Synthesis, crystal structure and properties of [C5H10NO2]3[PMo12O40]·4.5H2O , 2006 .

[24]  E. Wang,et al.  Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, bi-, and trimetallic cores as nodes. , 2006, Chemistry.

[25]  Yang-guang Li,et al.  Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper-amino acid complexes. , 2006, Angewandte Chemie.

[26]  Shoutian Zheng,et al.  Hybrid inorganic-organic 1-D and 2-D frameworks with {As8V14O42} clusters as building blocks , 2005 .

[27]  Shoutian Zheng,et al.  New solids from old cluster : Syntheses and structural characterization of [Zn(2,2/-bpy)3]2[As8V14O42(H2O)4H2O and [Zn(2,2/-bpy)(dien)]2[As8V14O42(H2O)]2H2O , 2005 .

[28]  C. Hill,et al.  Stereoisomerism in polyoxometalates: structural and spectroscopic studies of bis(malate)-functionalized cluster systems. , 2005, Chemical communications.

[29]  Chao Qin,et al.  An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks. , 2005, Chemical communications.

[30]  C. Hill,et al.  Enantiomerically pure polytungstates: chirality transfer through zirconium coordination centers to nanosized inorganic clusters. , 2005, Angewandte Chemie.

[31]  L. Cronin,et al.  Polyoxometalate Nanostructures, Superclusters, and Colloids: From Functional Clusters to Chemical Aesthetics , 2005 .

[32]  P. Kögerler,et al.  Polyoxometallat-Nanostrukturen, -Supercluster und -Kolloide: von funktionellen Clustern zu chemischer Ästhetik† , 2005 .

[33]  Vladislav A. Blatov,et al.  Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database , 2004 .

[34]  Zhong-Min Su,et al.  Interlocked and interdigitated architectures from self-assembly of long flexible ligands and cadmium salts. , 2004, Angewandte Chemie.

[35]  C. Serre,et al.  Synthesis, Characterization, and Properties of an Open-Framework Iron(III) Dicarboxylate: MIL-85 or FeIII2O{O2C−CH3}2{O2C−C6H4−CO2}·2CH3OH , 2004 .

[36]  Daqiang Yuan,et al.  A Novel 3‐D Self‐Penetrating Topological Network Assembled by Mixed Bridging Ligands , 2004 .

[37]  R. A. Jensen,et al.  Cation-cation interactions between uranyl cations in a polar open-framework uranyl periodate. , 2004, Journal of the American Chemical Society.

[38]  Bin Zhang,et al.  Mn3(HCOO)6: a 3D porous magnet of diamond framework with nodes of Mn-centered MnMn4 tetrahedron and guest-modulated ordering temperature. , 2004, Chemical communications.

[39]  Chunhua Yan,et al.  From achiral ligands to chiral coordination polymers: spontaneous resolution, weak ferromagnetism, and topological ferrimagnetism. , 2004, Journal of the American Chemical Society.

[40]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[41]  N. Guillou,et al.  The chirality, porosity, and ferromagnetism of a 3D nickel glutarate with intersecting 20-membered ring channels. , 2003, Angewandte Chemie.

[42]  Davide M. Proserpio,et al.  POLYCATENATION, POLYTHREADING AND POLYKNOTTING IN COORDINATION NETWORK CHEMISTRY , 2003 .

[43]  Daqiang Yuan,et al.  A novel nonlinear optically active tubular coordination network based on two distinct homo-chiral helices. , 2003, Chemical communications.

[44]  P. Gouzerh,et al.  Highly efficient peptide bond formation to functionalized Wells-Dawson-type polyoxotungstates. , 2003, Angewandte Chemie.

[45]  Wenbin Lin,et al.  Interlocked chiral nanotubes assembled from quintuple helices. , 2003, Journal of the American Chemical Society.

[46]  C. Rao,et al.  Amine-templated linear vanadium sulfates with different chain structures. , 2003, Inorganic chemistry.

[47]  T. Yamase,et al.  Alkali‐Metal‐Controlled Self‐Assembly of Crown‐Shaped Ring Complexes of Lanthanide/[α‐AsW9O33]9−: [K⊂{Eu(H2O)2(α‐AsW9O33)}6]35− and [Cs⊂{Eu(H2O)2(α‐AsW9O33)}4]23− , 2003 .

[48]  F. Porta,et al.  Open network architectures from the self-assembly of AgNO3 and 5,10,15,20-tetra(4-pyridyl)porphyrin (H2tpyp) building blocks: the exceptional self-penetrating topology of the 3D network of [Ag8(ZnIItpyp)7(H2O)2](NO3)8. , 2003, Angewandte Chemie.

[49]  Wenbin Lin,et al.  Chiral crown ether pillared lamellar lanthanide phosphonates. , 2002, Journal of the American Chemical Society.

[50]  Ulrich Kortz,et al.  Mit Aminosäuren funktionalisierte Heteropolymolybdate von AsIII, SbIII, BiIII, SeIV und TeIV , 2002 .

[51]  D. Powell,et al.  Towards main-chain-polyoxometalate-containing hybrid polymers: a highly efficient approach to bifunctionalized organoimido derivatives of hexamolybdates. , 2002, Angewandte Chemie.

[52]  U. Kortz,et al.  Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIV functionalized by amino acids. , 2002, Angewandte Chemie.

[53]  D. Amabilino,et al.  Spontaneous resolution under supramolecular control. , 2002, Chemical Society reviews.

[54]  Xiao‐Ming Chen,et al.  Double-stranded helices and molecular zippers assembled from single-stranded coordination polymers directed by supramolecular interactions. , 2002, Chemistry.

[55]  P. Maggard,et al.  From Linear Inorganic Chains to Helices: Chirality in the M(pyz)(H2O)2MoO2F4 (M = Zn, Cd) Compounds , 2002 .

[56]  Wenbin Lin,et al.  Homochiral 3D lanthanide coordination networks with an unprecedented 4(9)6(6) topology. , 2002, Chemical communications.

[57]  Chuande Wu,et al.  Hydrothermal assembly of a novel three-dimensional framework formed by [GdMo(12)O(42)](9-) anions and nine coordinated Gd(III) cations. , 2002, Journal of the American Chemical Society.

[58]  X. Bu,et al.  New mononuclear, cyclic tetranuclear, and 1-D helical-chain Cu(II) complexes formed by metal-assisted hydrolysis of 3,6-di-2-pyridyl-1,2,4,5-tetrazine (DPTZ): crystal structures and magnetic properties. , 2002, Inorganic chemistry.

[59]  A. Cheetham,et al.  Open-Framework Nickel Succinate, [Ni7(C4H4O4)6(OH)2(H2O)2]⋅2 H2O: A New Hybrid Material with Three-Dimensional Ni−O−Ni Connectivity† , 2002 .

[60]  T. Nakashima,et al.  Spontaneous resolution induced by self-organization of chiral self-complementary cobalt(III) complexes with achiral tripod-type ligands containing three imidazole groups. , 2002, Journal of the American Chemical Society.

[61]  Ren-Gen Xiong,et al.  Enantioseparation of racemic organic molecules by a zeolite Analogue , 2001 .

[62]  J. Zubieta,et al.  Solid state coordination chemistry: construction of 2D networks and 3D frameworks from phosphomolybdate clusters and binuclear Cu(II) complexes. The syntheses and structures of [(Cu2(tpypyz)(H2O)2)(Mo5O15)(HOPO3)2].nH2O [n = 2, 3; tpypyz = tetra(2-pyridyl)pyrazine]. , 2001, Chemical communications.

[63]  Gérard Férey,et al.  Nickel(II) Phosphate VSB-5: A Magnetic Nanoporous Hydrogenation Catalyst with 24-Ring Tunnels. , 2001, Angewandte Chemie.

[64]  P. Maggard,et al.  Understanding the role of helical chains in the formation of noncentrosymmetric solids. , 2001, Journal of the American Chemical Society.

[65]  Ralf Ludwig,et al.  Water: From Clusters to the Bulk. , 2001, Angewandte Chemie.

[66]  D. J. Price,et al.  Hydrothermal Synthesis, Structure, and Magnetism of [Co2(OH){1,2,3-(O2C)3C6H3}(H2O)]⋅H2O and [Co2(OH){1,2,3-(O2C)3C6H3}]: MagneticΔ-Chains with Mixed Cobalt Geometries , 2001 .

[67]  R. Ludwig Wasser: von Clustern in die Flüssigkeit , 2001 .

[68]  M. T. Pope,et al.  Chiral polyoxotungstates. 1. Stereoselective interaction of amino acids with enantiomers of [Ce(III)(alpha1-P2W17O61)(H2O)x]7-. The structure of DL-[Ce2(H2O)8(P2W17O61)2]14-. , 2001, Inorganic chemistry.

[69]  R F Schinazi,et al.  Polyoxometalate HIV-1 protease inhibitors. A new mode of protease inhibition. , 2001, Journal of the American Chemical Society.

[70]  C. Livage,et al.  Hydrothermal versus Nonhydrothermal Synthesis for the Preparation of Organic−Inorganic Solids: The Example of Cobalt(II) Succinate , 2001 .

[71]  Li‐Min Zheng,et al.  Hybrid Coordination Polymers—Metal Oxide Compounds with Chiral Structures , 2000 .

[72]  J. Zubieta,et al.  Organisch‐anorganische Hybridmaterialien: von „einfachen”︁ Koordinationspolymeren zu Molybdänoxiden mit Organodiamin‐Templaten , 1999 .

[73]  J. Zubieta,et al.  Organic-Inorganic Hybrid Materials: From "Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides. , 1999, Angewandte Chemie.

[74]  Seongsoon Park,et al.  A metal complex that binds α-amino acids with high and predictable stereospecificity , 1999, Nature.

[75]  R. Doedens,et al.  [M3 V18 O42 (H2 O)12 (XO4 )]⋅24 H2 O (M=Fe, Co; X=V, S): Metal Oxide Based Framework Materials Composed of Polyoxovanadate Clusters. , 1999, Angewandte Chemie.

[76]  M. I. Khan,et al.  [M3V18O42(H2O)12(XO4)]⋅24 H2O (M = Fe, Co; X = V, S): auf Metalloxiden basierende Gerüste aus Polyoxovanadatclustern , 1999 .

[77]  Jurriaan Huskens,et al.  Complete asymmetric chirality in a hydrogen-bonded assembly , 1999 .

[78]  A. Müller,et al.  Molecular growth from a Mo176 to a Mo248 cluster , 1999, Nature.

[79]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[80]  R. Robson,et al.  Einander durchdringende Netze: geordnete, periodische Verschlingung , 1998 .

[81]  Dante Gatteschi,et al.  Polyoxometalates: Very Large Clusters-Nanoscale Magnets. , 1998, Chemical reviews.

[82]  C. Hill,et al.  Introduction: Polyoxometalates-Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems. , 1998, Chemical reviews.

[83]  T. Yamase,et al.  Crystal Structure of the Pentamolybdate Complex Coordinated by Adenosine-5′-monophosphoric Acid , 1996 .

[84]  M. T. Pope,et al.  Lone-Pair-Induced Chirality in Polyoxotungstate Structures: Tin(II) Derivatives of A-Type XW9O34n- (X = P, Si). Interaction with Amino Acids , 1996 .

[85]  R. Haushalter,et al.  One-Dimensional Vanadium Oxide Chains Containing Covalently Bound Copper Coordination Complexes: Hydrothermal Synthesis and Characterization of Cu(H2N(CH2)2NH2)[V2O6], Cu(C10H8N2)[V2O6], and Cu(C10H8N2)2[V2O6] , 1996 .

[86]  T. Yamase,et al.  Synthesis and Crystal Structures of γ-Type Octamolybdates Coordinated by Chiral Lysines , 1995 .

[87]  R. Haushalter,et al.  An Inorganic Double Helix: Hydrothermal Synthesis, Structure, and Magnetism of Chiral [(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]�4H2O , 1993, Science.

[88]  Carolyn Pratt Brock,et al.  On the validity of Wallach's rule: on the density and stability of racemic crystals compared with their chiral counterparts , 1991 .

[89]  Wen-guan Lu,et al.  Achiral and Chiral Coordination Polymers Containing Helical Chains: The Chirality Transfer Between Helical Chains , 2008 .

[90]  Leroy Cronin,et al.  Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. , 2007, Chemical Society reviews.

[91]  M. Hong Inorganic-organic hybrid coordination polymers : A new frontier for materials research , 2007 .

[92]  Stuart R. Batten,et al.  Topology of interpenetration , 2001 .

[93]  Jianfang Ma,et al.  Networks with hexagonal circuits in co-ordination polymers of metal ions (ZnII, CdII) with 1,1′-(1,4-butanediyl)bis(imidazole) , 2000 .

[94]  David J. Williams,et al.  Formation of an infinite interpenetrating three-dimensional network by tris(N,N′-butylenebismidazole)manganese(II) tetrafluoroborate , 1996 .

[95]  R. Haushalter,et al.  An Inorganic Double Helix: Hydrothermal Synthesis, Structure, and Magnetism of Chiral [(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]{middle dot}4H2O. , 1993, Science.