The effect of Si addition and thermomechanical processing in an Fe-Mn alloy for biodegradable implants: Mechanical performance and degradation behavior

[1]  M. Vedani,et al.  Effect of Silver on Corrosion Behavior of Plastically Deformed Twinning-Induced Plasticity Steel for Biodegradable Stents , 2020 .

[2]  Diego Mantovani,et al.  Current status and outlook on the clinical translation of biodegradable metals , 2019, Materials Today.

[3]  A. Grajcar,et al.  Effect of Deformation Temperature on the Portevin-Le Chatelier Effect in Medium-Mn Steel , 2018, Metals.

[4]  F. Witte,et al.  Biodegradable Metals , 2018, Biomaterials Science.

[5]  R. Oriňaková,et al.  Recent advancements in Fe-based biodegradable materials for bone repair , 2018, Journal of Materials Science.

[6]  R. Gauvin,et al.  The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels , 2018 .

[7]  T. Niendorf,et al.  Corrosion properties of bioresorbable FeMn‐Ag alloys prepared by selective laser melting , 2017 .

[8]  M. Jahazi,et al.  Discontinuous strain-induced martensite transformation related to the Portevin-Le Chatelier effect in a medium manganese steel , 2017 .

[9]  P. Roca,et al.  Shape-Memory Effect and Pseudoelasticity in Fe–Mn-Based Alloys , 2017, Shape Memory and Superelasticity.

[10]  X. Wang,et al.  Kinematic and thermal characteristics of Lüders and Portevin-Le Châtelier bands in a medium Mn transformation-induced plasticity steel , 2017 .

[11]  C. Biffi,et al.  CO2-rich atmosphere strongly affects the degradation of Fe-21Mn-1C for biodegradable metallic implants , 2016 .

[12]  D. Vojtěch,et al.  Microstructure, mechanical and corrosion properties of biodegradable powder metallurgical Fe-2 wt% X (X = Pd, Ag and C) alloys , 2016 .

[13]  B. Aydemir,et al.  Investigation of Portevin-Le Chatelier effect of hot-rolled Fe-13Mn-0.2C-1Al-1Si TWIP steel , 2016 .

[14]  D. Caillard Dynamic strain ageing in iron alloys: The shielding effect of carbon , 2016 .

[15]  M. Janeček,et al.  Newly developed Ti-Nb-Zr-Ta-Si-Fe biomedical beta titanium alloys with increased strength and enhanced biocompatibility. , 2016, Materials science & engineering. C, Materials for biological applications.

[16]  D. Mareci,et al.  Electrochemical Characterization of a New Biodegradable FeMnSi Alloy Coated with Hydroxyapatite-Zirconia by PLD Technique , 2016 .

[17]  A. Zaoui,et al.  First-Principles Calculations of Electronic and Magnetic Properties in Ferromagnetic MnSeS, MnSeTe, and MnSePo Ternary Systems , 2016, Journal of Superconductivity and Novel Magnetism.

[18]  H. Maier,et al.  Processing of New Materials by Additive Manufacturing: Iron-Based Alloys Containing Silver for Biomedical Applications , 2015, Metallurgical and Materials Transactions A.

[19]  Bogdan Istrate,et al.  Preliminary Results of FeMnSi+Si(PLD) Alloy Degradation , 2015 .

[20]  P. Uggowitzer,et al.  Degradation performance of biodegradable Fe-Mn-C(-Pd) alloys. , 2013, Materials science & engineering. C, Materials for biological applications.

[21]  O. Bouaziz,et al.  Modelling the effect of carbon on deformation behaviour of twinning induced plasticity steels , 2011 .

[22]  Yufeng Zheng,et al.  Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. , 2011, Acta biomaterialia.

[23]  Yufeng Zheng,et al.  In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material , 2011 .

[24]  H. Okamoto,et al.  Mn-S (Manganese-Sulfur) , 2011 .

[25]  Mauro Ferrari,et al.  Mitotic trafficking of silicon microparticles. , 2009, Nanoscale.

[26]  D. Mantovani,et al.  Degradable metallic biomaterials: design and development of Fe-Mn alloys for stents. , 2009, Journal of biomedical materials research. Part A.

[27]  C. Yang,et al.  Effects of thermo-mechanical treatment on a Fe-30Mn-6Si shape memory alloy , 2008 .

[28]  V. Bliznuk,et al.  Effect of silicon on atomic distribution and shape memory in Fe–Mn base alloys , 2005 .

[29]  Olivier Bouaziz,et al.  Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys , 2004 .

[30]  B. K. Choudhary,et al.  Tensile stress–strain and work hardening behaviour of 316LN austenitic stainless steel , 2001 .

[31]  T. Hsu,et al.  Thermodynamic calculation of stacking fault energy in Fe–Mn–Si shape memory alloys , 2000 .

[32]  A. F. Guillermet,et al.  Fcc/Hcp martensitic transformation in the Fe-Mn system: Experimental study and thermodynamic analysis of phase stability , 1995 .

[33]  S. Venkadesan,et al.  Serrated Plastic Flow Revisited , 1995 .

[34]  A. F. Guillermet,et al.  Thermodynamics of the γ/ε Martensitic Transformation in Fe-Mn Alloys : Modelling of the Driving Force, and Calculation of the MS and AS Temperatures , 1995 .

[35]  J. Ågren,et al.  Thermodynamic evaluation of the Fe-Mn-Si system and the γ/ε martensitic transformation , 1993 .

[36]  A. Bowen,et al.  Limitations of the Hollomon strain-hardening equation , 1974 .

[37]  W. C. Leslie,et al.  Some aspects of serrated yielding in substitutional solid solutions of iron , 1972 .

[38]  J. D. Baird The effects of strain-ageing due to interstitial solutes on the mechanical properties of metals , 1971 .

[39]  H. Wendrock,et al.  Novel biodegradable Fe-Mn-C-S alloy with superior mechanical and corrosion properties , 2017 .

[40]  J. Kubásek,et al.  Microstructural, mechanical, corrosion and cytotoxicity characterization of the hot forged FeMn30(wt.%) alloy. , 2016, Materials science & engineering. C, Materials for biological applications.

[41]  D. Dunne Shape memory in ferrous alloys , 2012 .

[42]  A. F. Guillermet,et al.  Fcc/Hcp martensitic transformation in the Fe-Mn system: Part II. Driving force and thermodynamics of the nucleation process , 2004 .